Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    CHARACTERISTICS AND THERMAL PERFORMANCE OF NANOFLUID FILM OVER HORIZONTAL MULTI-FACETED CYLINDER

    Fithry Mohd Amir*, Mohd Zamri Yusoff, Saiful Hasmady Abu Hassan

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.27

    Abstract Nanofluid film on a horizontal tube is investigated numerically on the circular and multi-faceted cylinder. The fluid flow characteristics, including film thickness, shear stress, and thermal performance, are observed and analyzed. Fluid film on the circular surface is typical in many engineering applications, but the study of nanofluid film on non-circular surface is deficient in literature. The study provides a numerical model of a multi-faceted cylinder to simulate the nanofluid film on the non-circular surfaces using a volume of fluid (VOF) method. The ratio of Brownian motion to thermophoretic diffusion, NBT developed along the film thickness More >

  • Open Access

    ARTICLE

    Computational Study of Anastomosis Angle of Arteriovenous Fistula for Hemodialysis

    Suraj Shembekar*, Dhananjay Zodpe, Pramod Padole

    Molecular & Cellular Biomechanics, Vol.19, No.4, pp. 165-175, 2022, DOI:10.32604/mcb.2022.021513 - 27 December 2022

    Abstract Arteriovenous fistula (AVF) is the endorsed method of vascular access for hemodialysis in end-stage renal disease (ESRD). However, more than 60% of AVF fail to mature for hemodialysis. Intimal hyperplasia leads to stenosis is the primary cause of fistula failure. Wall shear stress (WSS) is one of the important parameters that enact a crucial role in building of intimal hyperplasia. The prime purpose of this research work is to investigate the effect of anastomosis angle on WSS, pressure drop, venous outflow rate and identify the optimal angle of anastomosis of AVF, so that it helps… More >

  • Open Access

    ARTICLE

    Study of Effect of Boundary Conditions on Patient-Specific Aortic Hemodynamics

    Qingzhuo Chi1, Huimin Chen1, Shiqi Yang1, Lizhong Mu1,*, Changjin Ji2, Ying He1, Yong Luan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 31-47, 2022, DOI:10.32604/cmes.2022.018286 - 24 January 2022

    Abstract Cardiovascular computational fluid dynamics (CFD) based on patient-specific modeling is increasingly used to predict changes in hemodynamic parameters before or after surgery/interventional treatment for aortic dissection (AD). This study investigated the effects of flow boundary conditions (BCs) on patient-specific aortic hemodynamics. We compared the changes in hemodynamic parameters in a type A dissection model and normal aortic model under different BCs: inflow from the auxiliary and truncated structures at aortic valve, pressure control and Windkessel model outflow conditions, and steady and unsteady inflow conditions. The auxiliary entrance remarkably enhanced the physiological authenticity of numerical simulations… More >

  • Open Access

    ARTICLE

    Effect of Patient-Specific Aorta Wall Properties on Hemodynamic Parameters

    Mohamad Shukri Zakaria1,*, Haslina Abdullah2, Azmi Nordin1, Syazwati Ahmad Zaki1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 171-179, 2021, DOI:10.32604/fdmp.2021.010974 - 09 February 2021

    Abstract This study deals with the interaction of blood flow with the wall aorta, i.e., the boundary of the main artery that transports blood in the human body. The problem is addressed in the framework of computational fluid dynamics complemented with (FSI), i.e., a fluid-structure interaction model. Two fundamental types of wall are considered, namely a flexible and a rigid boundary. The resulting hemodynamic flows are carefully compared in order to determine which boundary condition is more effective in reproducing reality. Special attention is paid to wall shear stress (WSS), a factor known for its ability More >

  • Open Access

    ABSTRACT

    Mass Transport of LDL in Stenotic Right Coronary Arteries

    Biyue Liu1,*, Dalin Tang2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 25-26, 2019, DOI:10.32604/mcb.2019.06825

    Abstract The blood flow and mass transport pattern of low-density lipoprotein (LDL) in a right coronary artery with two stenoses are studied. Computations were carried out under physiological conditions. Our results show a strong correlation between wall shear stress (WSS) and distribution patterns of LDL. More >

  • Open Access

    ABSTRACT

    The Influence of Enhanced External Counterpulsation Intervention on the Biomechanical Stress Distribution of Advanced Plaque: A 3D FSI Study Based on in vivo Animal Experiment

    Yahui Zhang1, Hui Wang1,2, Zhouming Mai1,2, Jianhang Du1,2,3,*, Guifu Wu1,2,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 85-86, 2019, DOI:10.32604/mcb.2019.05836

    Abstract Enhanced external counter pulsation (EECP) is an effective therapy to provide beneficial assistance for the failing heart by reducing cardiac afterload and increasing blood flow perfusion noninvasively. The technique of EECP involves the use of the EECP device to inflate and deflate a series of compression cuffs wrapped around the patient’s calves, lower thighs, and upper thighs. As the result, the enhanced flow perfusion is derived from the device’s propelling blood from veins of lower body to arteries of upper body and increases the blood supply for the important organs and brain. In the ACCF/AHA… More >

  • Open Access

    ARTICLE

    Hemodynamics of Enhanced External Counterpulsation with Different Coronary Stenosis

    Sihan Chen1, Bao Li1, Haisheng Yang1, Jianhang Du2, Xiaoling Li2, Youjun Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 149-162, 2018, DOI:10.31614/cmes.2018.04133

    Abstract Enhanced external counterpulsation (EECP) is able to treat myocardial ischemia, which is usually caused by coronary artery stenosis. However, the underlying mechanisms regarding why this technique is effective in treating myocardial ischemia remains unclear and there is no patient-specific counterpulsation mode for different rates of coronary artery stenosis in clinic. This study sought to investigate the hemodynamic effect of varied coronary artery stenosis rates when using EECP and the necessity of adopting targeted counterpulsation mode to consider different rates of coronary artery stenosis. Three 3-dimensional (3D) coronary models with different stenosis rates, including 55% (Model… More >

  • Open Access

    ARTICLE

    The Analysis of Wall Shear Stress Modulated by Acute Exercise in the Human Common Carotid Artery with an Elastic Tube Model

    Yanxia Wang1, Yu Wang2, Siqi Li3, ur Rehman Aziz3, Shutian Liu1, Kairong Qin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 127-147, 2018, DOI:10.31614/cmes.2018.03985

    Abstract Assessment of the magnitude and pattern of wall shear stress (WSS) in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function. In the previous studies, the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model, which did not take non-linear effects of vessel elastic deformation into consideration. In this study, with an elastic tube model, we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to… More >

  • Open Access

    ARTICLE

    Impact of Coronary Tortuosity on Coronary Pressure and Wall Shear Stress: an Experimental Study

    Yang Li1, Xiuxian Liu2, Zhiyong Li2,*, Jiayi Tong1, Yi Feng1, Genshan Ma1, Chengxing Shen3, Naifeng Liu1

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 213-229, 2017, DOI:10.3970/mcb.2017.014.213

    Abstract Coronary tortuosity is a common angiographic finding, but the hemodynamic significance of coronary tortuosity is largely unknown. The impact of coronary tortuosity on coronary pressure and wall shear stress is still unclear. We addressed this issue in the present experimental study. A distorted tube model connected to heart pumping machine was established to simulate the coronary circulation. The pressure of each point was measured with a coronary pressure guidewire. Influence of tortuosity angle and tortuosity number on local pressure was measured. Wall shear stress was calculated accordingly to the pressure of each point. Pressure distribution… More >

  • Open Access

    ARTICLE

    Anatomical Variations in Circle of Willis and Intracranial Aneurysm Formation

    Zhen Liu1, Yan Cai1, Guo-Zhong Chen2, Guang-Ming Lu, Zhi-Yong Li1,3,*

    Molecular & Cellular Biomechanics, Vol.14, No.1, pp. 19-31, 2017, DOI:10.3970/mcb.2017.014.019

    Abstract Background: Intracranial aneurysm (IA) can be commonly found in the circle of Willis (CoW), and a higher morbidity of IA is found to be associated with a higher percentage of an incomplete CoW. Hemodynamic factors are believed to play an important role in aneurysm formation. However, how the anatomical variations in CoW lead to hemodynamic difference and what hemodynamic parameters play important roles in aneurysm formation have not been quantified and assessed. Methods and Results: Thirty patients were included and based one computed tomography angiography, they were divided into three groups (10 patients per group):… More >

Displaying 1-10 on page 1 of 15. Per Page