Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble

    Muhammad Rizwan1,2, Muhammad Faheem Mushtaq1, Maryam Rafiq2, Arif Mehmood3, Isabel de la Torre Diez4, Monica Gracia Villar5,6,7, Helena Garay5,8,9, Imran Ashraf10,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2047-2066, 2024, DOI:10.32604/cmc.2024.037347 - 27 February 2024

    Abstract Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning Model for Intrusion Detection System

    Mahmoud Ragab1,2,*, Sultanah M. Alshammari2,3, Abdullah S. Al-Malaise Al-Ghamdi2,4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2497-2512, 2023, DOI:10.32604/csse.2023.041446 - 28 July 2023

    Abstract The Internet of Things (IoT) system has confronted dramatic growth in high dimensionality and data traffic. The system named intrusion detection systems (IDS) is broadly utilized for the enhancement of security posture in an IT infrastructure. An IDS is a practical and suitable method for assuring network security and identifying attacks by protecting it from intrusive hackers. Nowadays, machine learning (ML)-related techniques were used for detecting intrusion in IoTs IDSs. But, the IoT IDS mechanism faces significant challenges because of physical and functional diversity. Such IoT features use every attribute and feature for IDS self-protection… More >

  • Open Access

    ARTICLE

    Horizontal Voting Ensemble Based Predictive Modeling System for Colon Cancer

    Ushaa Eswaran1,*, S. Anand2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1917-1928, 2023, DOI:10.32604/csse.2023.032523 - 09 February 2023

    Abstract Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance… More >

  • Open Access

    ARTICLE

    Reactions’ Descriptors Selection and Yield Estimation Using Metaheuristic Algorithms and Voting Ensemble

    Olutomilayo Olayemi Petinrin1, Faisal Saeed2, Xiangtao Li1, Fahad Ghabban2, Ka-Chun Wong1,3,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4745-4762, 2022, DOI:10.32604/cmc.2022.020523 - 11 October 2021

    Abstract Bioactive compounds in plants, which can be synthesized using N-arylation methods such as the Buchwald-Hartwig reaction, are essential in drug discovery for their pharmacological effects. Important descriptors are necessary for the estimation of yields in these reactions. This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation. The algorithms were evaluated based on computational time and the number of selected descriptors. Analyses show that robust performance is obtained with more descriptors, compared to cases where fewer descriptors are selected. The essential descriptor was deduced based on the frequency of More >

Displaying 1-10 on page 1 of 4. Per Page