Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Magnetic Field Effect and Heat Transfer of Nanofluids within Waveform Microchannel

    Mehdi Moslemi1, Motahare Mahmoodnezhad1, S. A. Edalatpanah1,*, Sulima Ahmed Mohammed Zubair2, Hamiden Abd El-Wahed Khalifa2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1957-1973, 2023, DOI:10.32604/cmes.2022.021481 - 20 September 2022

    Abstract In this research, a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated. A simple coordinate transformation to transform wavy surface to a flat surface is employed. A cubic spline collocation numerical method is employed to analyze transformed equations. The effect of various parameters such as Reynolds number, volume fraction 0-, Hartmann number, and amplitude of wave length was evaluated in improving the performance of a wavy microchannel. According to the presented results, the sinusoidal shape of the microchannel has a direct impact on heat More >

  • Open Access

    ARTICLE

    LAMINAR FLOW HEAT TRANSFER IN HELICAL OVAL-TWISTED TUBE FOR HEAT EXCHANGER APPLICATIONS

    Scott Wahlquista, Amir Alia,b,*, Su-Jong Yoonc, Piyush Sabharwallc

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-8, 2022, DOI:10.5098/hmt.18.35

    Abstract The heat transfer performance of a novel tube configuration that combines the swirling velocity induced by oval-twisting and secondary flow generated by a helical geometrical flow path is presented. The Nusselt number (Nu) and friction factor (f) are compared for the laminar flow regime (Re = 250- 2000) under isothermal wall conditions. Under the same flow and boundary conditions, the oval-twisted helical tube increased the Nu and slightly increased the f over the circular helical tube. The best performance with the highest Nuand lowest f occurs at the coil curvature ratio (dh/D) of 0.17. The quantified enhancement performance factor More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF COUPLED NATURAL CONVECTION AND SURFACE RADIATION IN A SQUARE CAVITY WITH THE LINEARLY HEATED SIDE WALL(S)

    Ravi Shankar Prasada,*, S.N. Singhb, Amit Kumar Guptac

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.16

    Abstract The results of numerical analysis of coupled laminar natural convection and surface radiation in a two-dimensional closed square cavity with the uniformly heated bottom wall, linearly heated vertical side wall(s) and the adiabatic top wall is discussed. The cavity is filled with natural air (Pr = 0.70) as the fluid medium. In the present study, the governing equations i.e., the Navier-Stokes Equation in the stream function – vorticity form and the Energy Equation are solved for a constant property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. More >

  • Open Access

    ARTICLE

    COMBINED NATURAL CONVECTION AND SURFACE RADIATION IN A SQUARE CAVITY WITH THE INVERSELY LINEARLY HEATED OPPOSITE SIDE WALLS

    Ravi Shankar Prasada,*,†, Ujjwal Kumar Nayaka, Rajen Kumar Nayaka, Amit Kumar Guptab

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-7, 2022, DOI:10.5098/hmt.19.4

    Abstract This paper presents the results of numerical analysis of coupled laminar natural convection and surface radiation in a two-dimensional closed square cavity with the inversely linearly heated vertical opposite side walls and the adiabatic top and bottom walls. The cavity is filled with natural air (Pr = 0.70) as the fluid medium. In the present study, the governing equations i.e., Navier-Stokes Equation in the stream function - vorticity form and Energy Equation are solved for a constant property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. For More >

  • Open Access

    ARTICLE

    LES Analysis of the Unsteady Flow Characteristics of a Centrifugal Pump Impeller

    Ting Zhang1, Denghao Wu1,2,*, Shijun Qiu2, Peijian Zhou1, Yun Ren3, Jiegang Mou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1349-1361, 2022, DOI:10.32604/fdmp.2022.019617 - 27 May 2022

    Abstract Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers. In order to tackle this problem, in the present work, a large eddy simulation (LES) approach is applied to determine the characteristics of these unstable flows. Moreover, a vorticity identification method is used to characterize quantitatively the vortex position inside the impeller and its influencing area. By comparing the outcomes of the numerical simulations and experimental results provided by a Particle Image Velocimetry (PIV) technique, it is shown that an apparent “alternating stall” phenomenon exists inside the impeller when relatively small flow More >

  • Open Access

    ARTICLE

    Numerical Study on the Blade Channel Vorticity in a Francis Turbine

    Zhiqi Zhou*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1091-1100, 2021, DOI:10.32604/fdmp.2021.016618 - 08 September 2021

    Abstract A relevant way to promote the sustainable development of energy is to use hydropower. Related systems heavily rely on the use of turbines, which require careful analysis and optimization. In the present study a mixed experimental-numerical approach is implemented to investigate the related mixed water flow. In particular, particle image velocimetry (PIV) is initially used to verify the effectiveness of the numerical model. Then numerical results are produced for various conditions. It is shown that an increase in the guide vane opening can reduce the extension of the region where the fluid velocity is 0 More >

  • Open Access

    ARTICLE

    Numerical Solutions for Heat Transfer of An Unsteady Cavity with Viscous Heating

    H. F. Wong1,2, Muhammad Sohail3, Z. Siri1, N. F. M. Noor1,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 319-336, 2021, DOI:10.32604/cmc.2021.015710 - 22 March 2021

    Abstract The mechanism of viscous heating of a Newtonian fluid filled inside a cavity under the effect of an external applied force on the top lid is evaluated numerically in this exploration. The investigation is carried out by assuming a two-dimensional laminar in-compressible fluid flow subject to Neumann boundary conditions throughout the numerical iterations in a transient analysis. All the walls of the square cavity are perfectly insulated and the top moving lid produces a constant finite heat flux even though the fluid flow attains the steady-state condition. The objective is to examine the effects of… More >

  • Open Access

    ARTICLE

    COUPLED LAMINAR NATURAL CONVECTION AND SURFACE RADIATION IN PARTIALLY RIGHT SIDE OPEN CAVITIES

    Ravi Shankar Prasada , S.N. Singhb , Amit Kumar Guptac,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-15, 2018, DOI:10.5098/hmt.11.28

    Abstract This paper presents the results of numerical analysis of steady laminar natural convection and surface radiation in the two dimensional partially right side open square cavity filled with natural air (Pr = 0.70) as the fluid medium. The cavity has left isothermal hot wall with top, bottom and right adiabatic walls. In the present study, the governing equations i.e. Navier-Stokes Equation in the stream function – vorticity form and Energy Equation are solved for a constant thermophysical property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. For More >

  • Open Access

    ARTICLE

    Rotational Motion of Micropolar Fluid Spheroid in Concentric Spheroidal Container

    M. Krishna Prasad1, G. Manpreet Kaur1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 107-125, 2017, DOI:10.3970/fdmp.2017.013.107

    Abstract The slow steady rotation of a micropolar fluid spheroid whose shape deviates slightly from that of a sphere in concentric spheroidal container filled with Newtonian viscous fluid is studied analytically. The boundary conditions used are the continuity of velocity and stress components, and spin vorticity relation. The torque and wall correction factor exerted on the micropolar fluid spheroid is obtained. The dependence of wall correction factor on the micropolarity parameter, spin parameter, viscosity ratio and deformation parameter is studied numerically and its variation is presented graphically. In the limiting cases, the torque acting on solid More >

  • Open Access

    ARTICLE

    Mathematical Modeling of Two Dimensional Ferrofluid Flow in Thermal and Buoyant Conditions in a Trough

    Anupam Bhandari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.4, pp. 155-171, 2016, DOI:10.3970/fdmp.2016.012.155

    Abstract The present problem addresses a thermally driven two-dimensional, buoyant flow in a vessel with the application of magnetic field directed in the radial and tangential direction. In the present study, a trough filled with ferrofluid is heated along the center strip by an applied heat flux. Thereby the convection pattern along with the heat distribution is observed. The half of the trough dynamics is calculated with the symmetric plane in the center. On the surface of the bowl, penalty function is applied to enforce the no-slip boundary condition. This problem is then modelled and the More >

Displaying 1-10 on page 1 of 22. Per Page