Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Effective Video Summarization Approach Based on Visual Attention

    Hilal Ahmad1, Habib Ullah Khan2, Sikandar Ali3,*, Syed Ijaz Ur Rahman1, Fazli Wahid3, Hizbullah Khattak4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1427-1442, 2022, DOI:10.32604/cmc.2022.021158 - 03 November 2021

    Abstract Video summarization is applied to reduce redundancy and develop a concise representation of key frames in the video, more recently, video summaries have been used through visual attention modeling. In these schemes, the frames that stand out visually are extracted as key frames based on human attention modeling theories. The schemes for modeling visual attention have proven to be effective for video summaries. Nevertheless, the high cost of computing in such techniques restricts their usability in everyday situations. In this context, we propose a method based on KFE (key frame extraction) technique, which is recommended… More >

  • Open Access

    ARTICLE

    Visual Saliency Prediction Using Attention-based Cross-modal Integration Network in RGB-D Images

    Xinyue Zhang1, Ting Jin1,*, Mingjie Han1, Jingsheng Lei2, Zhichao Cao3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 439-452, 2021, DOI:10.32604/iasc.2021.018643 - 11 August 2021

    Abstract Saliency prediction has recently gained a large number of attention for the sake of the rapid development of deep neural networks in computer vision tasks. However, there are still dilemmas that need to be addressed. In this paper, we design a visual saliency prediction model using attention-based cross-model integration strategies in RGB-D images. Unlike other symmetric feature extraction networks, we exploit asymmetric networks to effectively extract depth features as the complementary information of RGB information. Then we propose attention modules to integrate cross-modal feature information and emphasize the feature representation of salient regions, meanwhile neglect… More >

  • Open Access

    ARTICLE

    The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

    Lei Feng1,2, Haibin Li1,*, Yakun Gao1, Yakun Zhang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 831-839, 2020, DOI:10.32604/iasc.2020.010117

    Abstract In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of More >

Displaying 1-10 on page 1 of 3. Per Page