Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Modified Visual Geometric Group Architecture for MRI Brain Image Classification

    N. Veni*, J. Manjula

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 825-835, 2022, DOI:10.32604/csse.2022.022318 - 04 January 2022

    Abstract The advancement of automated medical diagnosis in biomedical engineering has become an important area of research. Image classification is one of the diagnostic approaches that do not require segmentation which can draw quicker inferences. The proposed non-invasive diagnostic support system in this study is considered as an image classification system where the given brain image is classified as normal or abnormal. The ability of deep learning allows a single model for feature extraction as well as classification whereas the rational models require separate models. One of the best models for image localization and classification is More >

  • Open Access

    ARTICLE

    Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM

    G. Jayandhi1,*, J.S. Leena Jasmine2, S. Mary Joans2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 491-503, 2022, DOI:10.32604/csse.2022.016376 - 09 September 2021

    Abstract The most common form of cancer for women is breast cancer. Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer. Thus, an automated computerized system with high accuracy is needed. In this study, an efficient Deep Learning Architecture (DLA) with a Support Vector Machine (SVM) is designed for breast cancer diagnosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual Geometric Group (VGG) architecture with 16 layers is employed in this study as it uses the small size of 3 × 3 convolution filters that reduces… More >

Displaying 1-10 on page 1 of 2. Per Page