Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Anomalous Situations Recognition in Surveillance Images Using Deep Learning

    Qurat-ul-Ain Arshad1, Mudassar Raza1, Wazir Zada Khan2, Ayesha Siddiqa2, Abdul Muiz2, Muhammad Attique Khan3,*, Usman Tariq4, Taerang Kim5, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1103-1125, 2023, DOI:10.32604/cmc.2023.039752 - 08 June 2023

    Abstract Anomalous situations in surveillance videos or images that may result in security issues, such as disasters, accidents, crime, violence, or terrorism, can be identified through video anomaly detection. However, differentiating anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations, busy sporting fields, airports, shopping areas, military bases, care centers, etc. Deep learning models’ learning capability is leveraged to identify abnormal situations with improved accuracy. This work proposes a deep learning architecture called Anomalous Situation Recognition Network (ASRNet) for deep feature extraction to improve the… More >

  • Open Access

    ARTICLE

    An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video

    Sareer Ul Amin1, Yongjun Kim2, Irfan Sami3, Sangoh Park1,*, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3939-3958, 2023, DOI:10.32604/csse.2023.034805 - 03 April 2023

    Abstract In the present technological world, surveillance cameras generate an immense amount of video data from various sources, making its scrutiny tough for computer vision specialists. It is difficult to search for anomalous events manually in these massive video records since they happen infrequently and with a low probability in real-world monitoring systems. Therefore, intelligent surveillance is a requirement of the modern day, as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies. In this article, we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance… More >

  • Open Access

    ARTICLE

    A Skeleton-based Approach for Campus Violence Detection

    Batyrkhan Omarov1,2,3,4,*, Sergazy Narynov1, Zhandos Zhumanov1,2, Aidana Gumar1,5, Mariyam Khassanova1,5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 315-331, 2022, DOI:10.32604/cmc.2022.024566 - 24 February 2022

    Abstract In this paper, we propose a skeleton-based method to identify violence and aggressive behavior. The approach does not necessitate high-processing equipment and it can be quickly implemented. Our approach consists of two phases: feature extraction from image sequences to assess a human posture, followed by activity classification applying a neural network to identify whether the frames include aggressive situations and violence. A video violence dataset of 400 min comprising a single person's activities and 20 h of video data including physical violence and aggressive acts, and 13 classifications for distinguishing aggressor and victim behavior were More >

  • Open Access

    ARTICLE

    Real-Time Violent Action Recognition Using Key Frames Extraction and Deep Learning

    Muzamil Ahmed1,2, Muhammad Ramzan3,4, Hikmat Ullah Khan2, Saqib Iqbal5, Muhammad Attique Khan6, Jung-In Choi7, Yunyoung Nam8,*, Seifedine Kadry9

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2217-2230, 2021, DOI:10.32604/cmc.2021.018103 - 21 July 2021

    Abstract Violence recognition is crucial because of its applications in activities related to security and law enforcement. Existing semi-automated systems have issues such as tedious manual surveillances, which causes human errors and makes these systems less effective. Several approaches have been proposed using trajectory-based, non-object-centric, and deep-learning-based methods. Previous studies have shown that deep learning techniques attain higher accuracy and lower error rates than those of other methods. However, the their performance must be improved. This study explores the state-of-the-art deep learning architecture of convolutional neural networks (CNNs) and inception V4 to detect and recognize violence… More >

Displaying 1-10 on page 1 of 4. Per Page