Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Adaptive Graph Convolutional Adjacency Matrix Network for Video Summarization

    Jing Zhang*, Guangli Wu, Shanshan Song

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1947-1965, 2024, DOI:10.32604/cmc.2024.051781 - 15 August 2024

    Abstract Video summarization aims to select key frames or key shots to create summaries for fast retrieval, compression, and efficient browsing of videos. Graph neural networks efficiently capture information about graph nodes and their neighbors, but ignore the dynamic dependencies between nodes. To address this challenge, we propose an innovative Adaptive Graph Convolutional Adjacency Matrix Network (TAMGCN), leveraging the attention mechanism to dynamically adjust dependencies between graph nodes. Specifically, we first segment shots and extract features of each frame, then compute the representative features of each shot. Subsequently, we utilize the attention mechanism to dynamically adjust More >

  • Open Access

    ARTICLE

    Video Summarization Approach Based on Binary Robust Invariant Scalable Keypoints and Bisecting K-Means

    Sameh Zarif1,2,*, Eman Morad1, Khalid Amin1, Abdullah Alharbi3, Wail S. Elkilani4, Shouze Tang5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3565-3583, 2024, DOI:10.32604/cmc.2024.046185 - 26 March 2024

    Abstract Due to the exponential growth of video data, aided by rapid advancements in multimedia technologies. It became difficult for the user to obtain information from a large video series. The process of providing an abstract of the entire video that includes the most representative frames is known as static video summarization. This method resulted in rapid exploration, indexing, and retrieval of massive video libraries. We propose a framework for static video summary based on a Binary Robust Invariant Scalable Keypoint (BRISK) and bisecting K-means clustering algorithm. The current method effectively recognizes relevant frames using BRISK… More >

  • Open Access

    ARTICLE

    An Efficient Method for Underwater Video Summarization and Object Detection Using YoLoV3

    Mubashir Javaid1, Muazzam Maqsood2, Farhan Aadil2, Jibran Safdar1, Yongsung Kim3,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1295-1310, 2023, DOI:10.32604/iasc.2023.028262 - 19 July 2022

    Abstract Currently, worldwide industries and communities are concerned with building, expanding, and exploring the assets and resources found in the oceans and seas. More precisely, to analyze a stock, archaeology, and surveillance, several cameras are installed underseas to collect videos. However, on the other hand, these large size videos require a lot of time and memory for their processing to extract relevant information. Hence, to automate this manual procedure of video assessment, an accurate and efficient automated system is a greater necessity. From this perspective, we intend to present a complete framework solution for the task… More >

  • Open Access

    ARTICLE

    Effective Video Summarization Approach Based on Visual Attention

    Hilal Ahmad1, Habib Ullah Khan2, Sikandar Ali3,*, Syed Ijaz Ur Rahman1, Fazli Wahid3, Hizbullah Khattak4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1427-1442, 2022, DOI:10.32604/cmc.2022.021158 - 03 November 2021

    Abstract Video summarization is applied to reduce redundancy and develop a concise representation of key frames in the video, more recently, video summaries have been used through visual attention modeling. In these schemes, the frames that stand out visually are extracted as key frames based on human attention modeling theories. The schemes for modeling visual attention have proven to be effective for video summaries. Nevertheless, the high cost of computing in such techniques restricts their usability in everyday situations. In this context, we propose a method based on KFE (key frame extraction) technique, which is recommended… More >

Displaying 1-10 on page 1 of 4. Per Page