Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Convection and Stratification of Temperature and Concentration

    Alexey Fedyushkin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1351-1364, 2024, DOI:10.32604/fdmp.2024.050267

    Abstract This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side. Weak, medium and intensive modes of stationary laminar thermal and thermo-concentration convection are considered. It is shown that nonlinear flow features can radically change the flow structure and characteristics of heat and mass transfer. Moreover, the temperature and concentration segregation in the center of the square region display a non-monotonic dependence on the Grashof number (flow intensity). The formation of a nonstationary periodic structure of thermal convection More >

  • Open Access

    ARTICLE

    Influence of Methane-Hydrogen Mixture Characteristics on Compressor Vibrations

    Vladimir Ya. Modorskii, Ivan E. Cherepanov*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1031-1043, 2024, DOI:10.32604/fdmp.2024.048494

    Abstract A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation, storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures. Natural gas can be transported using a pipeline system with the required pressure being maintained by gas compression stations. This method, however, is affected by some problems too. Compressors emergency stops can be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibration amplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth… More >

  • Open Access

    REVIEW

    Fluidization and Transport of Vibrated Granular Matter: A Review of Landmark and Recent Contributions

    Peter Watson1, Sebastien Vincent Bonnieu2, Marcello Lappa1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 1-29, 2024, DOI:10.32604/fdmp.2023.029280

    Abstract We present a short retrospective review of the existing literature about the dynamics of (dry) granular matter under the effect of vibrations. The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment. Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified. Such landmark results are analyzed, while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics. Although no classification is perfect, and it is… More >

  • Open Access

    ARTICLE

    Investigation of the Free Vibrations of Radial Functionally Graded Circular Cylindrical Beams Based on Differential Quadrature Method

    Xiaojun Huang1,2, Liaojun Zhang1,*, Renyu Ge2, Hanbo Cui2, Zhedong Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 23-41, 2022, DOI:10.32604/cmes.2022.019765

    Abstract In the current research, an effective differential quadrature method (DQM) has been developed to solve natural frequency and vibration modal functions of circular section beams along radial functional gradient. Based on the high-order theory of transverse vibration of circular cross-section beams, lateral displacement equation was reconstructed neglecting circumferential shear stress. Two equations coupled with deflection and rotation angles were derived based on elastic mechanics theory and further simplified into a constant coefficient differential equation with natural frequency as eigenvalue. Then, differential quadrature method was applied to transform the eigenvalue problem of the derived differential equation… More >

  • Open Access

    ARTICLE

    An Improved Model to Characterize Drill-String Vibrations in Rotary Drilling Applications

    Yong Wang, Hongjian Ni*, Ruihe Wang, Shubin Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1263-1273, 2022, DOI:10.32604/fdmp.2022.020405

    Abstract A specific model is elaborated for stick-slip and bit-bounce vibrations, which are dangerous dynamic phenomena typically encountered in the context of rotary drilling applications. Such a model takes into account two coupled degrees of freedom of drill-string vibrations. Moreover, it assumes a state-dependent time delay and a viscous damping for both the axial and torsional vibrations and relies on a sawtooth function to account for the cutting force fluctuation. In the frame of this theoretical approach, the influence of rock brittleness on the stability of the drill string is calculated via direct integration of the More >

  • Open Access

    ARTICLE

    Dimensional Amplitude Response Analysis of Vibrations Produced by Defects in Rolling Contact Bearings

    Imran M. Jamadar1,*, B. Suresha1, Prasanta Kumar Samal1, S. A. I. Bellary2

    Sound & Vibration, Vol.56, No.2, pp. 165-191, 2022, DOI:10.32604/sv.2022.015267

    Abstract Usage of rolling contact bearings in variety of rotor-dynamic applications has put forth a need to develop a detailed and easy to implement techniques for the assessment of damage related features in these bearings so that before mechanical failure, maintenance actions can be planned well in advance. In accordance to this, a method based on dimensional amplitude response analysis and scaling laws is presented in this paper for the diagnosis of defects in different components of rolling contact bearings in a dimensionally scaled rotor-bearing system. Rotor, bearing, operating and defect parameters involved are detailed for… More >

  • Open Access

    ARTICLE

    A Suitable Active Control for Suppression the Vibrations of a Cantilever Beam

    Y. A. Amer1, A. T. EL-Sayed2, M. N. Abd EL-Salam3,*

    Sound & Vibration, Vol.56, No.2, pp. 89-104, 2022, DOI:10.32604/sv.2022.011838

    Abstract In our consideration, a comparison between four different types of controllers for suppression the vibrations of the cantilever beam excited by an external force is carried out. Those four types are the linear velocity feedback control, the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position feedback (PPF) controller. The suitable type is the PPF controller for suppression the vibrations of the cantilever beam. The approximate solution obtained up to the first approximation by using the multiple scale method. The PPF controller effectiveness is studied on the system. We used frequency-response More >

  • Open Access

    ARTICLE

    Vibration Control of Vertical Turbine Pump by Optimization of Vane Pitch Tolerances of an Impeller Using Statistical Techniques

    Ravindra Birajdar1,*, Appasaheb Keste2, Shravan Gawande2

    Sound & Vibration, Vol.55, No.4, pp. 305-327, 2021, DOI:10.32604/sv.2021.017000

    Abstract The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine (VT) pump impeller. For this purpose, the study is divided into two parts viz. to find the critical hydraulic eccentricity of a VT pump impeller by way of numerical simulations and design of experiments to find the vane pitch tolerance using critical hydraulic eccentricity. The effect of impeller vane pitch deviations on hydraulic unbalance is examined for a vertical turbine pump using Design of Experiments (DOE). A suitable orthogonal matrix has been selected with vane pitch at More >

  • Open Access

    ARTICLE

    Optimization of Transducer Location for Novel Non-Intrusive Methodologies of Diagnosis in Diesel Engines

    S. Narayan1,*, M. U. Kaisan2, Shitu Abubakar2, Faisal O. Mahroogi3, Vipul Gupta4

    Sound & Vibration, Vol.55, No.3, pp. 221-234, 2021, DOI:10.32604/sv.2021.016539

    Abstract The health monitoring has been studied to ensure integrity of design of engine structure by detection, quantification, and prediction of damages. Early detection of faults may allow the downtime of maintenance to be rescheduled, thus preventing sudden shutdown of machines. In cylinder pressure developed, vibrations and noise emissions data provide a rich source of information about condition of engines. Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue. The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines. The effects More >

  • Open Access

    ARTICLE

    Influence of the Hook Position on the Vertical Vibrations of an Automobile Exhaust System: Application of the Robust Optimization Design

    Jianqiang Xiong*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 555-567, 2021, DOI:10.32604/fdmp.2021.015429

    Abstract A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration (bending) of an automobile exhaust system. A block diagram for the robustness analysis of the exhaust system is initially constructed from the major affecting factors. Secondly, the second-order inertia force is set as the vibration excitation source of the exhaust system and the displacement of four hooks of the exhaust system is selected as the variable factor. Then tests are carried out to investigate the resulting vertical bending considering four influencing factors and three levels of More >

Displaying 1-10 on page 1 of 44. Per Page