Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    PROCEEDINGS

    Vibration Characteristics of Multilayer Airborne Equipment Integrated Platform

    Binjie Mu1, Jun Liu2,*, Yuanfang Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011110

    Abstract With the improvement of aircraft design requirements, the development of airborne equipment towards lightweight, miniaturization and weight reduction has brought great challenges to the structural design of airborne equipment. Usually, airborne equipment needs to be connected to the fuselage through supporting brackets. In the process of airplane flight, due to the influence of vibration and other complex load conditions, the mounting bracket of airborne equipment is prone to damage caused by the unreasonable structural design of airborne equipment. Some sensitive airborne electronic equipment has special requirements for the dynamic characteristics of the bracket. Therefore, the… More >

  • Open Access

    ARTICLE

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

    Zhan Wang1, Liang Li2,*, Long Wang1, Weidong Zhu3, Yinghui Li4, Echuan Yang5

    Energy Engineering, Vol.121, No.10, pp. 2981-3000, 2024, DOI:10.32604/ee.2024.048161 - 11 September 2024

    Abstract A dynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of a wind turbine. The dynamic pitch motion will affect the linear vibration characteristics of the blade. However, these influences have not been studied in previous research. In this paper, the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied. The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration, where the rigid pitch motion introduces a parametrically excited vibration to the beam. Partial differential equations More > Graphic Abstract

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

  • Open Access

    ARTICLE

    Nonlinear Flap-Wise Vibration Characteristics of Wind Turbine Blades Based on Multi-Scale Analysis Method

    Qifa Lang, Yuqiao Zheng*, Tiancai Cui, Chenglong Shi, Heyu Zhang

    Energy Engineering, Vol.121, No.2, pp. 483-498, 2024, DOI:10.32604/ee.2023.042437 - 25 January 2024

    Abstract This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle. We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory (NREL), to research the effects of the nonlinear flap-wise vibration characteristics. The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam, and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first. Then, the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the… More >

  • Open Access

    ARTICLE

    Numerical Simulation Study of Vibration Characteristics of Cantilever Traffic Signal Support Structure under Wind Environment

    Meng Zhang1, Zhichao Zhou1, Guifeng Zhao1,*, Fangfang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 673-698, 2023, DOI:10.32604/cmes.2022.021463 - 24 August 2022

    Abstract Computational fluid dynamics (CFD) and the finite element method (FEM) are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole. By building a finite element model with the same scale as the actual structure and performing modal analysis, a preliminary understanding of the dynamic properties of the structure is obtained. Based on the two-way fluid-structure coupling calculation method, the wind vibration response of the structure under different incoming flow conditions is calculated, and the vibration characteristics of the structure are analyzed through the displacement time course data of… More >

  • Open Access

    ARTICLE

    Vibration Characteristics Analysis and Structure Optimization of Catenary Portal Structure on Four-Wire Bridge

    Sihua Wang1,2, Xujie Li1,2,*

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 361-382, 2022, DOI:10.32604/sdhm.2022.023851 - 03 January 2023

    Abstract The portal structure is the support equipment in the catenary, which bears the load of contact suspension and support equipment. In practical work, with the change of external forces, the support equipment bears complex and changeable loads, so it has higher requirements for its reliability and safety. In order to study the dynamic characteristics of catenary portal structure on continuous beam of four-way bridge, taking the catenary portal structure on Dshaping four-way bridge as the research object, the portal structure simulation model of bridge-network integration was established in Midas Civil. The maximum point of deformation… More >

  • Open Access

    ARTICLE

    Dynamic Modeling of the Feed Drive System of a CNC Metal Cutting Machine

    H. Heydarnia1,*, I. A. Kiselev1, M. M. Ermolaev2, S. Nikolaev3

    Sound & Vibration, Vol.55, No.1, pp. 19-30, 2021, DOI:10.32604/sv.2021.04410 - 19 January 2021

    Abstract Studying the vibrational behavior of feed drive systems is important for enhancing the structural performance of computer numerical control (CNC) machines. The preload on the screw and nut position have a great influence on the vibration characteristics of the feed drive as two very important operational conditions. Rotational acceleration of the screw also affects the performance of the CNC feed drive when machining small parts. This paper investigates the influence of preload and nut position on the vibration characteristics of the feed drive system of a CNC metal cutting machine in order to be able More >

  • Open Access

    ARTICLE

    Finite Element Analysis on Vibration Characteristics of an Offshore Floating Breakwater

    Hongyi Yan1, Dingguo Zhang1, Liang Li1,*, Xiaoyu Luo2

    Structural Durability & Health Monitoring, Vol.14, No.1, pp. 19-36, 2020, DOI:10.32604/sdhm.2020.07457 - 01 March 2020

    Abstract The construction of seaside facilities is a hot topic in the field of ocean engineering. In this paper, a new type of floating breakwater is designed by 3DCAD geometric modeling. Based on the vibration theory and finite element technology, the floating breakwater model is optimized, and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out. Natural frequencies and mode shapes of the blades are first calculated, and the effects of the natural frequencies in both dry and wet conditions are taken into account. Modal… More >

  • Open Access

    ARTICLE

    Vibration Damping Design and Testing Research of Space Payload Cabinet

    Haitao Luo1, Jia Fu1, Rong Chen1, Peng Wang2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 855-864, 2019, DOI:10.31209/2019.100000089

    Abstract Space payloads which installed on spacecraft such as satellites and airships are usually experienced random vibrations and low-frequency sinusoidal vibrations during launching. In this paper, a space payload cabinet is introduced, and the damping design is carried out by applying constrained viscoelastic damping layer to the surfaces of the cabinet to ensure that the space payloads can withstand the above-mentioned mechanical environmental conditions. A reliable connection between the space payload cabinet and the shaking table is achieved through the vibration test fixture. The basic requirements for the function and design of the vibration test fixture More >

  • Open Access

    ARTICLE

    Simplified Method and Influence Factors of Vibration Characteristics of Isolated Curved Girder Bridge

    Tongfa Deng1,2, Junping Zhang1,3,*, Mahmoud Bayat4

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 189-212, 2018, DOI:10.3970/sdhm.2018.04392

    Abstract The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties. A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model, making it convenient for providing a reference to the optimization of design and safety analysis. A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided. Combined with the Matlab… More >

  • Open Access

    ARTICLE

    Optimization of Nonlinear Vibration Characteristics for Seismic Isolation Rubber

    A. Takahashi1, T. Shibata2, K. Motoyama3, K. Misaji4

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 1-15, 2017, DOI:10.3970/cmes.2017.113.001

    Abstract A method for reducing the damage to a structure caused by an earthquake namely, using laminated rubber for seismic isolation is proposed, and the vibration characteristics of the rubber (which minimizes the seismic response of the structure during an earthquake) is optimized. A method called “Equivalent Linear System using Restoring Force Model of Power Function Type” (PFT-ELS) is applied to nonlinear vibration analysis of the rubber. In that analysis, a building with 15 layers of the laminated rubber is modeled. The seismic response of the building is analyzed, and the usefulness of the laminated rubber More >

Displaying 1-10 on page 1 of 10. Per Page