Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Influence of Variable Thermal Properties on Bioconvective Flow of a Reiner-Rivlin Nanofluid with Mass Suction: A Cattaneo-Christov Framework

    Mahmoud Bady1, Fitrian Imaduddin1,2, Iskander Tlili1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1339-1352, 2025, DOI:10.32604/fdmp.2025.065295 - 30 June 2025

    Abstract This study explores the bioconvective behavior of a Reiner-Rivlin nanofluid, accounting for spatially varying thermal properties. The flow is considered over a porous, stretching surface with mass suction effects incorporated into the transport analysis. The Reiner-Rivlin nanofluid model includes variable thermal conductivity, mass diffusivity, and motile microorganism density to accurately reflect realistic biological conditions. Radiative heat transfer and internal heat generation are considered in the thermal energy equation, while the Cattaneo-Christov theory is employed to model non-Fourier heat and mass fluxes. The governing equations are non-dimensionalized to reduce complexity, and a numerical solution is obtained More >

  • Open Access

    ARTICLE

    Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium

    Muhammad Abaid Ur Rehman1,*, Muhammad Asif Farooq1, Ahmed M. Hassan2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 263-286, 2024, DOI:10.32604/fhmt.2023.044587 - 21 March 2024

    Abstract This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity, and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms are then converted into a system of coupled… More >

Displaying 1-10 on page 1 of 2. Per Page