Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Numerical Solutions of Fractional Variable Order Differential Equations via Using Shifted Legendre Polynomials

    Kamal Shah1,2, Hafsa Naz2, Thabet Abdeljawad1,3,*, Aziz Khan1, Manar A. Alqudah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 941-955, 2023, DOI:10.32604/cmes.2022.021483 - 31 August 2022

    Abstract In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional differential equations (FDEs) subject to the boundary and initial conditions is developed. We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices. Further, operational matrices are constructed using variable order differentiation and integration. We are finding the operational matrices of variable order differentiation and integration by omitting the discretization of data. With the help of aforesaid matrices, considered FDEs are converted to algebraic equations of Sylvester type. Finally, the algebraic equations we get are More >

  • Open Access

    ARTICLE

    High Order Block Method for Third Order ODEs

    A. I. Asnor1, S. A. M. Yatim1, Z. B. Ibrahim2, N. Zainuddin3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1253-1267, 2021, DOI:10.32604/cmc.2021.014781 - 12 January 2021

    Abstract Many initial value problems are difficult to be solved using ordinary, explicit step-by-step methods because most of these problems are considered stiff. Certain implicit methods, however, are capable of solving stiff ordinary differential equations (ODEs) usually found in most applied problems. This study aims to develop a new numerical method, namely the high order variable step variable order block backward differentiation formula (VSVO-HOBBDF) for the main purpose of approximating the solutions of third order ODEs. The computational work of the VSVO-HOBBDF method was carried out using the strategy of varying the step size and order… More >

  • Open Access

    ARTICLE

    Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets

    Yanxin Wang1, *, Li Zhu1, Zhi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 339-350, 2019, DOI:10.31614/cmes.2019.04575

    Abstract An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper. The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented. Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations. And the convergence of the Euler wavelets basis is given. The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. More >

  • Open Access

    ARTICLE

    Numerical Study for a Class of Variable Order Fractional Integral-differential Equation in Terms of Bernstein Polynomials

    Jinsheng Wang1, Liqing Liu2, Yiming Chen2, Lechun Liu2, Dayan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 69-85, 2015, DOI:10.3970/cmes.2015.104.069

    Abstract The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. The fractional derivative is described in the Caputo sense. Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable. By solving the algebraic equations, the numerical solutions are acquired. The method in general is easy to implement and yields good results. Numerical examples are provided to demonstrate the validity and applicability of More >

  • Open Access

    ARTICLE

    Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials

    Yiming Chen1, Liqing Liu1, Xuan Li1 and Yannan Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 81-100, 2014, DOI:10.3970/cmes.2014.097.081

    Abstract In this paper, Bernstein polynomials method is proposed for the numerical solution of a class of variable order time fractional diffusion equation. Coimbra variable order fractional operator is adopted, as it is the most appropriate and desirable definition for physical modeling. The Coimbra variable order fractional operator can also be regarded as a Caputo-type definition. The main characteristic behind this approach in this paper is that we derive two kinds of operational matrixes of Bernstein polynomials. With the operational matrixes, the equation is transformed into the products of several dependent matrixes which can also be More >

  • Open Access

    ARTICLE

    Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differential Equation

    Lifeng Wang1, Yunpeng Ma1,2, Yongqiang Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.2, pp. 97-111, 2014, DOI:10.3970/cmes.2014.101.097

    Abstract In this paper, a numerical method based on the Legendre polynomials is presented for a class of variable order fractional differential equation. We adopt the Coimbra variable order fractional operator, which can be viewed as a Caputo-type definition. Three different kinds of operational matrixes with Legendre polynomials are derived. A truncated the Legendre polynomials series together with the products of several dependent matrixes are utilized to reduce the variable order fractional differential equation to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited n. An error More >

  • Open Access

    ARTICLE

    Operational Matrix Method for Solving Variable Order Fractional Integro-differential Equations

    Mingxu Yi1, Jun Huang1, Lifeng Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 361-377, 2013, DOI:10.3970/cmes.2013.096.361

    Abstract In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series together with the polynomials operational matrix are utilized to reduce the variable order fractional integro-differential equations to a system of algebraic equations. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Some examples are included to demonstrate the More >

Displaying 1-10 on page 1 of 7. Per Page