Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps

    Wael M. S. Yafooz*, Abdullah Alsaeedi

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 735-759, 2024, DOI:10.32604/cmc.2024.048270 - 25 April 2024

    Abstract In the last decade, technical advancements and faster Internet speeds have also led to an increasing number of mobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobile apps. The use of these apps eases our daily lives, and all customers who need any type of service can access it easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digital services to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services, particularly during two large occasions,… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Social Media Recommendation Based on User Comments

    K. Saraswathi1,*, V. Mohanraj2, Y. Suresh2, J. Senthilkumar2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1691-1702, 2023, DOI:10.32604/csse.2023.027987 - 15 June 2022

    Abstract Nowadays, review systems have been developed with social media Recommendation systems (RS). Although research on RS social media is increasing year by year, the comprehensive literature review and classification of this RS research is limited and needs to be improved. The previous method did not find any user reviews within a time, so it gets poor accuracy and doesn’t filter the irrelevant comments efficiently. The Recursive Neural Network-based Trust Recommender System (RNN-TRS) is proposed to overcome this method’s problem. So it is efficient to analyse the trust comment and remove the irrelevant sentence appropriately. The… More >

Displaying 1-10 on page 1 of 2. Per Page