Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Contrastive Clustering for Unsupervised Recognition of Interference Signals

    Xiangwei Chen1, Zhijin Zhao1,2,*, Xueyi Ye1, Shilian Zheng2, Caiyi Lou2, Xiaoniu Yang2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1385-1400, 2023, DOI:10.32604/csse.2023.034543 - 09 February 2023

    Abstract Interference signals recognition plays an important role in anti-jamming communication. With the development of deep learning, many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms. However, there is no unsupervised interference signals recognition algorithm at present. In this paper, an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering (DDCC) is proposed. Specifically, in the first phase, four data augmentation strategies for interference signals are used in data-augmentation-based (DA-based) contrastive learning. In the second phase, the original dataset’s k-nearest… More >

  • Open Access

    ARTICLE

    Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques

    S. Sreedhar Kumar1, Syed Thouheed Ahmed2,*, Qin Xin3, S. Sandeep4, M. Madheswaran5, Syed Muzamil Basha2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 281-299, 2022, DOI:10.32604/cmc.2022.023693 - 24 February 2022

    Abstract This paper presents, a new approach of Medical Image Pixels Clustering (MIPC), aims to trace the dissimilar patterns over the Magnetic Resonance (MR) image through the process of automatically identify the appropriate number of distinct clusters based on different improved unsupervised clustering schemes for enrichment, pattern predication and deeper investigation. The proposed MIPC consists of two stages: clustering and validation. In the clustering stage, the MIPC automatically identifies the distinct number of dissimilar clusters over the gray scale MR image based on three different improved unsupervised clustering schemes likely improved Limited Agglomerative Clustering (iLIAC), Dynamic More >

Displaying 1-10 on page 1 of 2. Per Page