Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Optimized General Uniform Quantum State Preparation

    Mark Ariel Levin*

    Journal of Quantum Computing, Vol.6, pp. 15-24, 2024, DOI:10.32604/jqc.2024.047423 - 24 April 2024

    Abstract Quantum algorithms for unstructured search problems rely on the preparation of a uniform superposition, traditionally achieved through Hadamard gates. However, this incidentally creates an auxiliary search space consisting of nonsensical answers that do not belong in the search space and reduce the efficiency of the algorithm due to the need to neglect, un-compute, or destructively interfere with them. Previous approaches to removing this auxiliary search space yielded large circuit depth and required the use of ancillary qubits. We have developed an optimized general solver for a circuit that prepares a uniform superposition of any N More >

  • Open Access

    ARTICLE

    Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment

    Chengjun Wang1,2, Fan Ding2,*, Yiwen Wang1, Renyuan Wu1, Xingyu Yao2, Chengjie Jiang1, Liuyi Ling1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1481-1501, 2024, DOI:10.32604/cmc.2023.046876 - 30 January 2024

    Abstract The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots. Real-time identification of strawberries in an unstructured environment is a challenging task. Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy. To this end, the present study proposes an Efficient YOLACT (E-YOLACT) algorithm for strawberry detection and segmentation based on the YOLACT framework. The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism, pyramid squeeze shuffle attention (PSSA), for efficient feature extraction. Additionally, an attention-guided… More >

  • Open Access

    ARTICLE

    Multitarget Flexible Grasping Detection Method for Robots in Unstructured Environments

    Qingsong Fan, Qijie Rao, Haisong Huang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1825-1848, 2023, DOI:10.32604/cmes.2023.028369 - 26 June 2023

    Abstract In present-day industrial settings, where robot arms perform tasks in an unstructured environment, there may exist numerous objects of various shapes scattered in random positions, making it challenging for a robot arm to precisely attain the ideal pose to grasp the object. To solve this problem, a multistage robotic arm flexible grasp detection method based on deep learning is proposed. This method first improves the Faster RCNN target detection model, which significantly improves the detection ability of the model for multiscale grasped objects in unstructured scenes. Then, a Squeeze-and-Excitation module is introduced to design a… More >

  • Open Access

    ARTICLE

    Automatic Diagnosis of COVID-19 Patients from Unstructured Data Based on a Novel Weighting Scheme

    Amir Yasseen Mahdi1,2,*, Siti Sophiayati Yuhaniz1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1375-1392, 2023, DOI:10.32604/cmc.2023.032671 - 22 September 2022

    Abstract The extraction of features from unstructured clinical data of Covid-19 patients is critical for guiding clinical decision-making and diagnosing this viral disease. Furthermore, an early and accurate diagnosis of COVID-19 can reduce the burden on healthcare systems. In this paper, an improved Term Weighting technique combined with Parts-Of-Speech (POS) Tagging is proposed to reduce dimensions for automatic and effective classification of clinical text related to Covid-19 disease. Term Frequency-Inverse Document Frequency (TF-IDF) is the most often used term weighting scheme (TWS). However, TF-IDF has several developments to improve its drawbacks, in particular, it is not… More >

  • Open Access

    ARTICLE

    Contextual Text Mining Framework for Unstructured Textual Judicial Corpora through Ontologies

    Zubair Nabi1, Ramzan Talib1,*, Muhammad Kashif Hanif1, Muhammad Awais2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1357-1374, 2022, DOI:10.32604/csse.2022.025712 - 09 May 2022

    Abstract Digitalization has changed the way of information processing, and new techniques of legal data processing are evolving. Text mining helps to analyze and search different court cases available in the form of digital text documents to extract case reasoning and related data. This sort of case processing helps professionals and researchers to refer the previous case with more accuracy in reduced time. The rapid development of judicial ontologies seems to deliver interesting problem solving to legal knowledge formalization. Mining context information through ontologies from corpora is a challenging and interesting field. This research paper presents More >

  • Open Access

    ARTICLE

    Handling Big Data in Relational Database Management Systems

    Kamal ElDahshan1, Eman Selim2, Ahmed Ismail Ebada2, Mohamed Abouhawwash3,4, Yunyoung Nam5,*, Gamal Behery2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5149-5164, 2022, DOI:10.32604/cmc.2022.028326 - 21 April 2022

    Abstract Currently, relational database management systems (RDBMSs) face different challenges in application development due to the massive growth of unstructured and semi-structured data. This introduced new DBMS categories, known as not only structured query language (NoSQL) DBMSs, which do not adhere to the relational model. The migration from relational databases to NoSQL databases is challenging due to the data complexity. This study aims to enhance the storage performance of RDBMSs in handling a variety of data. The paper presents two approaches. The first approach proposes a convenient representation of unstructured data storage. Several extensive experiments were More >

  • Open Access

    ARTICLE

    Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques

    S. Sreedhar Kumar1, Syed Thouheed Ahmed2,*, Qin Xin3, S. Sandeep4, M. Madheswaran5, Syed Muzamil Basha2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 281-299, 2022, DOI:10.32604/cmc.2022.023693 - 24 February 2022

    Abstract This paper presents, a new approach of Medical Image Pixels Clustering (MIPC), aims to trace the dissimilar patterns over the Magnetic Resonance (MR) image through the process of automatically identify the appropriate number of distinct clusters based on different improved unsupervised clustering schemes for enrichment, pattern predication and deeper investigation. The proposed MIPC consists of two stages: clustering and validation. In the clustering stage, the MIPC automatically identifies the distinct number of dissimilar clusters over the gray scale MR image based on three different improved unsupervised clustering schemes likely improved Limited Agglomerative Clustering (iLIAC), Dynamic More >

  • Open Access

    ARTICLE

    Deep Q-Learning Based Optimal Query Routing Approach for Unstructured P2P Network

    Mohammad Shoab, Abdullah Shawan Alotaibi*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5765-5781, 2022, DOI:10.32604/cmc.2022.021941 - 11 October 2021

    Abstract Deep Reinforcement Learning (DRL) is a class of Machine Learning (ML) that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently. DRL has been used in many application fields, including games, robots, networks, etc. for creating autonomous systems that improve themselves with experience. It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially. Therefore, a novel query routing approach called Deep More >

  • Open Access

    ARTICLE

    Matrix-Free Higher-Order Finite Element Method for Parallel Simulation of Compressible and Nearly-Incompressible Linear Elasticity on Unstructured Meshes

    Arash Mehraban1, Henry Tufo1, Stein Sture2, Richard Regueiro2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1283-1303, 2021, DOI:10.32604/cmes.2021.017476 - 25 November 2021

    Abstract Higher-order displacement-based finite element methods are useful for simulating bending problems and potentially addressing mesh-locking associated with nearly-incompressible elasticity, yet are computationally expensive. To address the computational expense, the paper presents a matrix-free, displacement-based, higher-order, hexahedral finite element implementation of compressible and nearly-compressible (ν → 0.5) linear isotropic elasticity at small strain with p-multigrid preconditioning. The cost, solve time, and scalability of the implementation with respect to strain energy error are investigated for polynomial order p = 1, 2, 3, 4 for compressible elasticity, and p = 2, 3, 4 for nearly-incompressible elasticity, on different number More >

  • Open Access

    ARTICLE

    Mathematical Model Validation of Search Protocols in MP2P Networks

    Ajay Arunachalam1,*, Vinayakumar Ravi2, Moez Krichen3, Roobaea Alroobaea4, Saeed Rubaiee5

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1807-1829, 2021, DOI:10.32604/cmc.2021.016692 - 13 April 2021

    Abstract Broadcasting is a basic technique in Mobile ad-hoc network (MANET), and it refers to sending a packet from one node to every other node within the transmission range. Flooding is a type of broadcast where the received packet is retransmitted once by every node. The naive flooding technique, floods the network with query messages, while the random walk technique operates by contacting the subsets of every node’s neighbors at each step, thereby restricting the search space. One of the key challenges in an ad-hoc network is the resource or content discovery problem which is about… More >

Displaying 1-10 on page 1 of 25. Per Page