Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    PUNet: A Semi-Supervised Anomaly Detection Model for Network Anomaly Detection Based on Positive Unlabeled Data

    Gang Long, Zhaoxin Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 327-343, 2024, DOI:10.32604/cmc.2024.054558 - 15 October 2024

    Abstract Network anomaly detection plays a vital role in safeguarding network security. However, the existing network anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques… More >

  • Open Access

    ARTICLE

    Iterative Semi-Supervised Learning Using Softmax Probability

    Heewon Chung, Jinseok Lee*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5607-5628, 2022, DOI:10.32604/cmc.2022.028154 - 21 April 2022

    Abstract For the classification problem in practice, one of the challenging issues is to obtain enough labeled data for training. Moreover, even if such labeled data has been sufficiently accumulated, most datasets often exhibit long-tailed distribution with heavy class imbalance, which results in a biased model towards a majority class. To alleviate such class imbalance, semi-supervised learning methods using additional unlabeled data have been considered. However, as a matter of course, the accuracy is much lower than that from supervised learning. In this study, under the assumption that additional unlabeled data is available, we propose the More >

Displaying 1-10 on page 1 of 2. Per Page