Heewon Chung, Jinseok Lee*
CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5607-5628, 2022, DOI:10.32604/cmc.2022.028154
- 21 April 2022
Abstract For the classification problem in practice, one of the challenging issues is to obtain enough labeled data for training. Moreover, even if such labeled data has been sufficiently accumulated, most datasets often exhibit long-tailed distribution with heavy class imbalance, which results in a biased model towards a majority class. To alleviate such class imbalance, semi-supervised learning methods using additional unlabeled data have been considered. However, as a matter of course, the accuracy is much lower than that from supervised learning. In this study, under the assumption that additional unlabeled data is available, we propose the More >