Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    DAUNet: Detail-Aware U-Shaped Network for 2D Human Pose Estimation

    Xi Li1,2, Yuxin Li2, Zhenhua Xiao3,*, Zhenghua Huang1, Lianying Zou1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3325-3349, 2024, DOI:10.32604/cmc.2024.056464 - 18 November 2024

    Abstract Human pose estimation is a critical research area in the field of computer vision, playing a significant role in applications such as human-computer interaction, behavior analysis, and action recognition. In this paper, we propose a U-shaped keypoint detection network (DAUNet) based on an improved ResNet subsampling structure and spatial grouping mechanism. This network addresses key challenges in traditional methods, such as information loss, large network redundancy, and insufficient sensitivity to low-resolution features. DAUNet is composed of three main components. First, we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce… More >

  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    ARTICLE

    PUNet: A Semi-Supervised Anomaly Detection Model for Network Anomaly Detection Based on Positive Unlabeled Data

    Gang Long, Zhaoxin Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 327-343, 2024, DOI:10.32604/cmc.2024.054558 - 15 October 2024

    Abstract Network anomaly detection plays a vital role in safeguarding network security. However, the existing network anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques… More >

  • Open Access

    ARTICLE

    UNet Based on Multi-Object Segmentation and Convolution Neural Network for Object Recognition

    Nouf Abdullah Almujally1, Bisma Riaz Chughtai2, Naif Al Mudawi3, Abdulwahab Alazeb3, Asaad Algarni4, Hamdan A. Alzahrani5, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1563-1580, 2024, DOI:10.32604/cmc.2024.049333 - 18 July 2024

    Abstract The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes. Various technologies, such as augmented reality-driven scene integration, robotic navigation, autonomous driving, and guided tour systems, heavily rely on this type of scene comprehension. This paper presents a novel segmentation approach based on the UNet network model, aimed at recognizing multiple objects within an image. The methodology begins with the acquisition and preprocessing of the image, followed by segmentation using the fine-tuned UNet architecture. Afterward, we use an annotation tool to accurately label… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805 - 20 June 2024

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    Automatic Finding of Brain-Tumour Group Using CNN Segmentation and Moth-Flame-Algorithm, Selected Deep and Handcrafted Features

    Imad Saud Al Naimi1,2,*, Syed Alwee Aljunid Syed Junid1, Muhammad lmran Ahmad1,*, K. Suresh Manic2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2585-2608, 2024, DOI:10.32604/cmc.2024.046461 - 15 May 2024

    Abstract Augmentation of abnormal cells in the brain causes brain tumor (BT), and early screening and treatment will reduce its harshness in patients. BT’s clinical level screening is usually performed with Magnetic Resonance Imaging (MRI) due to its multi-modality nature. The overall aims of the study is to introduce, test and verify an advanced image processing technique with algorithms to automatically extract tumour sections from brain MRI scans, facilitating improved accuracy. The research intends to devise a reliable framework for detecting the BT region in the two-dimensional (2D) MRI slice, and identifying its class with improved… More >

  • Open Access

    ARTICLE

    Multilevel Attention Unet Segmentation Algorithm for Lung Cancer Based on CT Images

    Huan Wang1, Shi Qiu1,2,*, Benyue Zhang1, Lixuan Xiao3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1569-1589, 2024, DOI:10.32604/cmc.2023.046821 - 27 February 2024

    Abstract Lung cancer is a malady of the lungs that gravely jeopardizes human health. Therefore, early detection and treatment are paramount for the preservation of human life. Lung computed tomography (CT) image sequences can explicitly delineate the pathological condition of the lungs. To meet the imperative for accurate diagnosis by physicians, expeditious segmentation of the region harboring lung cancer is of utmost significance. We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner, erect an interpretable model, and attain segmentation of lung cancer. The specific advancements… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427 - 27 February 2024

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules

    Lu Chen1,#, Huaqiang Chen2,#, Zhikai Pan7, Sheng Xu2, Guangsheng Lai2, Shuwen Chen2,5,6, Shuihua Wang3,8, Xiaodong Gu2,6,*, Yudong Zhang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 361-382, 2024, DOI:10.32604/cmes.2023.031229 - 30 December 2023

    Abstract Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model’s generalization ability. Third, we introduce strategies for augmenting… More >

  • Open Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765 - 09 November 2023

    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range More >

Displaying 1-10 on page 1 of 32. Per Page