Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations

    I. G. Ameen1, N. A. Elkot2, M. A. Zaky3,*, A. S. Hendy4,5, E. H. Doha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 21-41, 2021, DOI:10.32604/cmes.2021.015310 - 28 June 2021

    Abstract We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding More >

  • Open Access

    ABSTRACT

    The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions

    Chein-Shan Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.2, pp. 55-84, 2008, DOI:10.3970/icces.2008.005.055

    Abstract The present paper provides a Lie-group shooting method for the numerical solutions of second-order nonlinear boundary value problems exhibiting multiple solutions. It aims to find all solutions as easy as possible. The boundary conditions considered are classified into four types, namely the Dirichlet, the first Robin, the second Robin and the Neumann. The two Robin type problems are transformed into a canonical one by using the technique of symmetric extension of the governing equations. The Lie-group shooting method is very effective to search unknown initial condition through a weighting factor r(0,1). Furthermore, the closed-form solutions are More >

  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Singularly Perturbed Two-Point Boundary Value Problems

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 179-196, 2006, DOI:10.3970/cmes.2006.015.179

    Abstract This paper studies the numerical computations of the second-order singularly perturbed boundary value problems (SPBVPs). In order to depress the singularity we consider a coordinate transformation from the x-domain to the t-domain. The relation between singularity and stiffness is demonstrated, of which the coordinate transformation parameter λ plays a key role to balance these two tendencies. Then we construct a very effective Lie-group shooting method to search the missing initial condition through a weighting factor r ∈ (0,1) in the t-domain formulation. For stabilizing the new method we also introduce two new systems by a translation of More >

  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.2, pp. 149-164, 2006, DOI:10.3970/cmes.2006.013.149

    Abstract The present paper provides a Lie-group shooting method for the numerical solutions of second order nonlinear boundary value problems exhibiting multiple solutions. It aims to find all solutions as easy as possible. The boundary conditions considered are classified into four types, namely the Dirichlet, the first Robin, the second Robin and the Neumann. The two Robin type problems are transformed into a canonical one by using the technique of symmetric extension of the governing equations. The Lie-group shooting method is very effective to search unknown initial condition through a weighting factor r ∈ (0,1) Furthermore, the More >

Displaying 1-10 on page 1 of 4. Per Page