Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction

    Lihui Ma1,*, Zhuo Han1, Wei Li1, Guangfeng Qi1, Ran Cheng2, Yuanyuan Wang1, Xiangran Mi3, Xiaohan Zhang1, Yunfei Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1381-1392, 2024, DOI:10.32604/fdmp.2024.046405

    Abstract When a gas-liquid two-phase flow (GLTPF) enters a parallel separator through a T-junction, it generally splits unevenly. This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream. In order to investigate these aspects and, more specifically, the so-called bias phenomenon (all gas and liquid flowing to one pipe, while the other pipe is a liquid column that fluctuates up and down), laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes. Moreover, a GLTPF prediction model based on the principle of minimum potential energy was… More >

  • Open Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1103-1122, 2024, DOI:10.32604/fdmp.2023.042654

    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes… More >

  • Open Access

    ARTICLE

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

    Ming Yan1, Caijiang Lu2,*, Pan Shi1,*, Meiling Zhang3, Jiawei Zhang1, Liang Wang1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 615-631, 2024, DOI:10.32604/fhmt.2024.048333

    Abstract In response to escalating challenges in energy conservation and emission reduction, this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers. Utilizing a fusion of hybrid modeling and automation technologies, we develop soft measurement models for key combustion parameters, such as the net calorific value of coal, flue gas oxygen content, and fly ash carbon content, within the Distributed Control System (DCS). Validated with performance test data, these models exhibit controlled root mean square error (RMSE) and maximum absolute error (MAXE) values, both within the… More > Graphic Abstract

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

  • Open Access

    ARTICLE

    VOLUME OF FLUID SIMULATION OF BOILING TWO-PHASE FLOW IN A VAPOR-VENTING MICROCHANNEL

    Chen Fang*, Milnes David, Anita Rogacs, Kenneth Goodson

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-11, 2010, DOI:10.5098/hmt.v1.1.3002

    Abstract Vapor-venting microchannel heat exchangers are promising because they address the problems of high pressure drop, flow instability, and local dryout that are common in conventional two-phase microchannel heat sinks. We present a 3D numerical simulation of the vapor-venting process in a rectangular microchannel bounded on one side by a hydrophobic porous membrane for phase-separation. The simulation is based on the volume of fluid (VOF) method together with models for interphase mass transfer and capillary force. Simulation shows the vapor-venting mechanism can effectively mitigate the vapor accumulation issue, reduce the pressure drop, and suppress the local More >

  • Open Access

    ARTICLE

    Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells

    Yongwei Duan, Zhaopeng Zhu, Hui He*, Gaoliang Xuan, Xuemeng Yu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 349-364, 2024, DOI:10.32604/fdmp.2023.042659

    Abstract The gas-water two-phase flow occurring as a result of fracturing fluid flowback phenomena is known to impact significantly the productivity of shale gas well. In this work, this two-phase flow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model (EDFM). This model assumes the region outside the stimulated reservoir volume (SRV) as a single-medium while the SRV region itself is described using a double-medium strategy which can account for the fluid exchange between the matrix and the micro-fractures. The shale gas adsorption, desorption, diffusion, gas slippage… More >

  • Open Access

    ARTICLE

    A New Distribution Method for Wet Steam Injection Optimization

    Jingjing Gao, Xingkai Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 109-127, 2024, DOI:10.32604/fdmp.2023.030106

    Abstract A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam “stimulation” methods for enhanced oil recovery. The new distribution system consists of a swirler, spiral dividing baffles, and critical flow nozzles. Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach. The results indicate that a higher inlet pressure leads to better results. Additionally, the internal flow field becomes more stable, and the More >

  • Open Access

    ARTICLE

    A NUMERICAL SIMULATION OF TWO-PHASE FLOW INSTABILITIES IN A TRAPEZOIDAL MICROCHANNEL

    Yun Whan Na* , J. N. Chung

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-14, 2018, DOI:10.5098/hmt.11.36

    Abstract Flow instabilities of convective two-phase boiling in a trapezoidal microchannel were investigated. using a three-dimensional numerical model. Parameters such as wall temperature and inlet pressure that characterize the instability phenomena of flow boiling with periodic flow patterns were studied at different channel wall heat fluxes and flow mass fluxes. Results were obtained for various wall heat flux levels and mass flow rates. The numerical results showed that large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations are major characteristics of flow instability. The wall temperature fluctuations are mainly initiated by the More >

  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of Oil-Water Flow with Drag Reducing Polymers in Horizontal Pipes

    Amer A. Abdulrahman1, Bashar J. Kadhim1, Zainab Y. Shnain1, Hassan Sh. Majidi2, Asawer A. Alwaiti1,*, Farooq Al-Sheikh1, Adnan A. AbdulRazak1, Mohammed Shorbaz1, Mazin J. Shibeeb3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2579-2595, 2023, DOI:10.32604/fdmp.2023.027454

    Abstract The well-known frictional effect related to liquid-liquid two-phase flow in pipelines can be reduced using drag-reducing additives. In this study, such an effect has been investigated experimentally using a mixture of oil and water. Moreover, numerical simulations have been carried out using the COMSOL simulation software. The measurements were taken in a horizontal pipe with the length and diameter equal to 3 and 0.125 m, respectively. Moreover, Polyethylene oxide with 150 ppm was exploited to reduce the drag effect while considering different water-to-oil fractions (0.3, 0.4, 0.5, and 0.7) and a constant total flow velocity More >

  • Open Access

    ARTICLE

    MEASUREMENTS AND MODELING OF FLUID FLOW AND THERMAL PROCESSES IN AN INDUSTRIAL PRECALCINER

    Qingxin Baa , Scott Egbertb, Xuefang Lia,* , Lin Chenga,**

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.20

    Abstract Precalciner performance is crucial to the production rate and lifespan of cement kiln systems. The gas-solid flow and pulverized coal combustion processes in an industrial precalciner were numerically modeled to understand the flow patterns and thermal processes in the system. The gas and meal flow rates and properties were measured on-site to determine the boundary conditions for the simulations and to validate the models. The upward swirl of the gas flow in the furnace helped disperse the particles and extend their duration in the precalciner. The O2 and CO2 concentration distributions indicated that the coal particles More >

  • Open Access

    ARTICLE

    EFFECT OF SEMI-CIRCLE RIB ON HEAT TRANSFER COEFFICIENT IN A RECTANGULAR CHANNEL

    Riyadh S. Al-Turaihi a , Doaa Fadhila,b,*, Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.29

    Abstract In this paper an experimental and numerical analysis has been conducted to study the effect of heat transfer and filed flow of two-phase flow (water and air) through a rectangular ribbed channel. The study has involved the several values of heat flux (120,140,160 Watts), air and water superficial velocity (1.096, 1.425, 1.644, 1.864, and 2.193 m/s) and (0.0421, 0.0842, and 0.1474 m/s), respectively. The distribution of temperature along the channel was photographed using thermal camera and compared with numerical results . The experimental test system was fabricated of vertical rectangular channel with cross section of… More >

Displaying 1-10 on page 1 of 58. Per Page