Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    TP-MobNet: A Two-pass Mobile Network for Low-complexity Classification of Acoustic Scene

    Soonshin Seo1, Junseok Oh2, Eunsoo Cho2, Hosung Park2, Gyujin Kim2, Ji-Hwan Kim2,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3291-3303, 2022, DOI:10.32604/cmc.2022.026259 - 16 June 2022

    Abstract Acoustic scene classification (ASC) is a method of recognizing and classifying environments that employ acoustic signals. Various ASC approaches based on deep learning have been developed, with convolutional neural networks (CNNs) proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models. When using ASC systems in the real world, model complexity and device robustness are essential considerations. In this paper, we propose a two-pass mobile network for low-complexity classification of the acoustic scene, named TP-MobNet. With inverse residuals and linear bottlenecks, TP-MobNet is based on… More >

Displaying 1-10 on page 1 of 1. Per Page