Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Political Optimizer with Deep Learning-Enabled Tongue Color Image Analysis Model

    Anwer Mustafa Hilal1,*, Eatedal Alabdulkreem2, Jaber S. Alzahrani3, Majdy M. Eltahir4, Mohamed I. Eldesouki5, Ishfaq Yaseen1, Abdelwahed Motwakel1, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1129-1143, 2023, DOI:10.32604/csse.2023.030080 - 03 November 2022

    Abstract Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the More >

  • Open Access

    ARTICLE

    A Novel Semi-Supervised Multi-Label Twin Support Vector Machine

    Qing Ai1,2,*, Yude Kang1, Anna Wang2

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 205-220, 2021, DOI:10.32604/iasc.2021.013357 - 07 January 2021

    Abstract Multi-label learning is a meaningful supervised learning task in which each sample may belong to multiple labels simultaneously. Due to this characteristic, multi-label learning is more complicated and more difficult than multi-class classification learning. The multi-label twin support vector machine (MLTSVM) [], which is an effective multi-label learning algorithm based on the twin support vector machine (TSVM), has been widely studied because of its good classification performance. To obtain good generalization performance, the MLTSVM often needs a large number of labelled samples. In practical engineering problems, it is very time consuming and difficult to obtain… More >

Displaying 1-10 on page 1 of 2. Per Page