Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    A Machine Learning Approach to Cyberbullying Detection in Arabic Tweets

    Dhiaa Musleh1, Atta Rahman1,*, Mohammed Abbas Alkherallah1, Menhal Kamel Al-Bohassan1, Mustafa Mohammed Alawami1, Hayder Ali Alsebaa1, Jawad Ali Alnemer1, Ghazi Fayez Al-Mutairi1, May Issa Aldossary2, Dalal A. Aldowaihi1, Fahd Alhaidari3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1033-1054, 2024, DOI:10.32604/cmc.2024.048003 - 18 July 2024

    Abstract With the rapid growth of internet usage, a new situation has been created that enables practicing bullying. Cyberbullying has increased over the past decade, and it has the same adverse effects as face-to-face bullying, like anger, sadness, anxiety, and fear. With the anonymity people get on the internet, they tend to be more aggressive and express their emotions freely without considering the effects, which can be a reason for the increase in cyberbullying and it is the main motive behind the current study. This study presents a thorough background of cyberbullying and the techniques used… More >

  • Open Access

    ARTICLE

    Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble

    Muhammad Rizwan1,2, Muhammad Faheem Mushtaq1, Maryam Rafiq2, Arif Mehmood3, Isabel de la Torre Diez4, Monica Gracia Villar5,6,7, Helena Garay5,8,9, Imran Ashraf10,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2047-2066, 2024, DOI:10.32604/cmc.2024.037347 - 27 February 2024

    Abstract Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of… More >

  • Open Access

    ARTICLE

    Deep Learning Based Sentiment Analysis of COVID-19 Tweets via Resampling and Label Analysis

    Mamoona Humayun1,*, Danish Javed2, Nz Jhanjhi2, Maram Fahaad Almufareh1, Saleh Naif Almuayqil1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 575-591, 2023, DOI:10.32604/csse.2023.038765 - 26 May 2023

    Abstract Twitter has emerged as a platform that produces new data every day through its users which can be utilized for various purposes. People express their unique ideas and views on multiple topics thus providing vast knowledge. Sentiment analysis is critical from the corporate and political perspectives as it can impact decision-making. Since the proliferation of COVID-19, it has become an important challenge to detect the sentiment of COVID-19-related tweets so that people’s opinions can be tracked. The purpose of this research is to detect the sentiment of people regarding this problem with limited data as… More >

  • Open Access

    ARTICLE

    Applying English Idiomatic Expressions to Classify Deep Sentiments in COVID-19 Tweets

    Bashar Tahayna, Ramesh Kumar Ayyasamy*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 37-54, 2023, DOI:10.32604/csse.2023.036648 - 26 May 2023

    Abstract Millions of people are connecting and exchanging information on social media platforms, where interpersonal interactions are constantly being shared. However, due to inaccurate or misleading information about the COVID-19 pandemic, social media platforms became the scene of tense debates between believers and doubters. Healthcare professionals and public health agencies also use social media to inform the public about COVID-19 news and updates. However, they occasionally have trouble managing massive pandemic-related rumors and frauds. One reason is that people share and engage, regardless of the information source, by assuming the content is unquestionably true. On Twitter,… More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Framework for Situational Aspects-Based Annotation and Classification of International Student’s Tweets during COVID-19

    Shabir Hussain1, Muhammad Ayoub2, Yang Yu1, Junaid Abdul Wahid1, Akmal Khan3, Dietmar P. F. Moller4, Hou Weiyan1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5355-5377, 2023, DOI:10.32604/cmc.2023.036779 - 29 April 2023

    Abstract As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the… More >

  • Open Access

    ARTICLE

    Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets

    Abdelwahed Motwakel1,*, Hala J. Alshahrani2, Abdulkhaleq Q. A. Hassan3, Khaled Tarmissi4, Amal S. Mehanna5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohammad Mahzari6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4767-4783, 2023, DOI:10.32604/cmc.2023.034840 - 29 April 2023

    Abstract Applied linguistics is an interdisciplinary domain which identifies, investigates, and offers solutions to language-related real-life problems. The new coronavirus disease, otherwise known as Coronavirus disease (COVID-19), has severely affected the everyday life of people all over the world. Specifically, since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection, the country has initiated the appropriate preventive measures (like lockdown, physical separation, and masking) for combating this extremely transmittable disease. So, individuals spent more time on online social media platforms (i.e., Twitter, Facebook, Instagram, LinkedIn, and Reddit) and expressed their… More >

  • Open Access

    ARTICLE

    Quantum Particle Swarm Optimization with Deep Learning-Based Arabic Tweets Sentiment Analysis

    Badriyya B. Al-onazi1, Abdulkhaleq Q. A. Hassan2, Mohamed K. Nour3, Mesfer Al Duhayyim4,*, Abdullah Mohamed5, Amgad Atta Abdelmageed6, Ishfaq Yaseen6, Gouse Pasha Mohammed6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2575-2591, 2023, DOI:10.32604/cmc.2023.033531 - 31 March 2023

    Abstract Sentiment Analysis (SA), a Machine Learning (ML) technique, is often applied in the literature. The SA technique is specifically applied to the data collected from social media sites. The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process. In this background, the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets (QPSODL-SAAT). The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic. Initially, the data pre-processing is performed to convert… More >

  • Open Access

    ARTICLE

    Dragonfly Optimization with Deep Learning Enabled Sentiment Analysis for Arabic Tweets

    Aisha M. Mashraqi, Hanan T. Halawani*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2555-2570, 2023, DOI:10.32604/csse.2023.031246 - 09 February 2023

    Abstract Sentiment Analysis (SA) is one of the Machine Learning (ML) techniques that has been investigated by several researchers in recent years, especially due to the evolution of novel data collection methods focused on social media. In literature, it has been reported that SA data is created for English language in excess of any other language. It is challenging to perform SA for Arabic Twitter data owing to informal nature and rich morphology of Arabic language. An earlier study conducted upon SA for Arabic Twitter focused mostly on automatic extraction of the features from the text.… More >

  • Open Access

    ARTICLE

    Deep Learning for Depression Detection Using Twitter Data

    Doaa Sami Khafaga1, Maheshwari Auvdaiappan2, K. Deepa3, Mohamed Abouhawwash4,5, Faten Khalid Karim1,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1301-1313, 2023, DOI:10.32604/iasc.2023.033360 - 05 January 2023

    Abstract Today social media became a communication line among people to share their happiness, sadness, and anger with their end-users. It is necessary to know people’s emotions are very important to identify depressed people from their messages. Early depression detection helps to save people’s lives and other dangerous mental diseases. There are many intelligent algorithms for predicting depression with high accuracy, but they lack the definition of such cases. Several machine learning methods help to identify depressed people. But the accuracy of existing methods was not satisfactory. To overcome this issue, the deep learning method is… More >

  • Open Access

    ARTICLE

    Multi-label Emotion Classification of COVID–19 Tweets with Deep Learning and Topic Modelling

    K. Anuratha1,*, M. Parvathy2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3005-3021, 2023, DOI:10.32604/csse.2023.031553 - 21 December 2022

    Abstract The COVID-19 pandemic has become one of the severe diseases in recent years. As it majorly affects the common livelihood of people across the universe, it is essential for administrators and healthcare professionals to be aware of the views of the community so as to monitor the severity of the spread of the outbreak. The public opinions are been shared enormously in microblogging media like twitter and is considered as one of the popular sources to collect public opinions in any topic like politics, sports, entertainment etc., This work presents a combination of Intensity Based… More >

Displaying 1-10 on page 1 of 17. Per Page