Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

    J. Serrano-Arellano1, M.I. Hernández-López1, J. L. Chávez-Servín2, E. V. Macias-Melo3, K. M. Aguilar-Castro3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1741-1765, 2025, DOI:10.32604/fhmt.2025.069560 - 31 December 2025

    Abstract A numerical study analyzed double diffusion caused by convective and radiative heat transfer in a greenhouse with and without internal humidity sources. Two cases were examined: one considering temperature and mass concentration gradients on vertical walls and another incorporating internal humidity sources, enhancing convective and diffusive flows. Four configurations were analyzed by varying the length of the greenhouse, and the Rayleigh number was calculated over a range from 2.29 × 1010 to 6.07 × 1012. Simulations modeled the greenhouse interior six times a day (8:00 a.m. to 7:00 p.m.), accounting for external temperature, humidity, and solar More > Graphic Abstract

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

  • Open Access

    ARTICLE

    Shock-Boundary Layer Interaction in Transonic Flows: Evaluation of Grid Resolution and Turbulence Modeling Effects on Numerical Predictions

    Mehmet Numan Kaya*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 327-343, 2025, DOI:10.32604/cmes.2025.072000 - 30 October 2025

    Abstract This study investigates the influence of mesh resolution and turbulence model selection on the accuracy of numerical simulations for transonic flow, with particular emphasis on shock-boundary layer interaction phenomena. Accurate prediction of such flows is notoriously difficult due to the sensitivity to near-wall resolution, global mesh density, and turbulence model assumptions, and this problem motivates the present work. Two solvers were employed, rhoCentralFoam (unsteady) and TSLAeroFoam (steady-state), both are compressible and density-based and implemented within the OpenFOAM framework. The investigation focuses on three different non-dimensional wall distance (y+) values of 1, 2.5 and 5, each implemented… More >

  • Open Access

    REVIEW

    Solitons-Like Coherent Structures in Shear Flows

    Ning Hu, Cunbiao Lee*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2389-2417, 2025, DOI:10.32604/fdmp.2025.067248 - 30 October 2025

    Abstract The formation, evolution, and dynamics of flow structures in wall-bounded turbulence have long been central themes in fluid-mechanics research. Over the past three decades, Soliton-like Coherent Structures (SCSs) have emerged as a ubiquitous and unifying feature across a wide range of shear flows, including K-type, O-type, N-type, and bypass transitional boundary layers, as well as fully developed turbulent boundary layers, mixing layers, and pipe flows. This paper presents a systematic review of the fundamental properties of SCSs and highlights their fundamental role in multiple transition scenarios. The analysis further explores the connection between SCSs and… More > Graphic Abstract

    Solitons-Like Coherent Structures in Shear Flows

  • Open Access

    ARTICLE

    LiSBOA: Enhancing LiDAR-Based Wind Turbine Wake and Turbulence Characterization in Complex Terrain

    Ahmad S. Azzahrani*

    Energy Engineering, Vol.122, No.11, pp. 4703-4713, 2025, DOI:10.32604/ee.2025.067398 - 27 October 2025

    Abstract The Light Detection and Ranging (LiDAR) data analysis method has emerged as a powerful and versatile tool for characterizing atmospheric conditions and modeling light propagation through various media. In the context of renewable energy, particularly wind energy, LiDAR is increasingly utilized to analyze wind flow, turbine wake effects, and turbulence in complex terrains. This study focuses on advancing LiDAR data interpretation through the development and application of the LiDAR Statistical Barnes Objective Analysis (LiSBOA) method. LiSBOA enhances the capacity of scanning LiDAR systems by enabling more precise optimization of scan configurations and improving the retrieval… More >

  • Open Access

    ARTICLE

    Optimization-Based Correction of Turbulence Models for Flow Prediction in Control Valves

    Shuxun Li1,2, Yuhao Tian1,2,*, Guolong Deng1,2, Wei Li1,2, Yinggang Hu1,2, Xiaoya Wen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1809-1837, 2025, DOI:10.32604/fdmp.2025.065877 - 12 September 2025

    Abstract The conventional Shear Stress Transport (SST) kω turbulence model often exhibits substantial inaccuracies when applied to the prediction of flow behavior in complex regions within axial flow control valves. To enhance its predictive fidelity for internal flow fields, this study introduces a novel calibration framework that integrates an artificial neural network (ANN) surrogate model with a particle swarm optimization (PSO) algorithm. In particular, an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space. For each sample, numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,… More >

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

  • Open Access

    PROCEEDINGS

    Direct Numerical Simulation for Transition and Turbulence Based on Nonlinear Coupled Constitutive Relation Model

    Lun Zhang1, Zhongzheng Jiang1,*, Weifang Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012382

    Abstract The study of boundary-layer transition and turbulence plays a crucial role in the development and design of high-speed aircrafts. Direct numerical simulation (DNS) is a numerical tool that enables the capture of flow phenomena across all scales, making it highly valuable for investigating the mechanism and process of transition and turbulence. In the DNS community, the prevailing approach involves directly resolving the Navier-Stokes (NS) equations. However, certain high-order effects lie beyond the capabilities of NS models when simulating compressible transition and turbulence under specific circumstances. To address this limitation, we have developed a DNS method… More >

  • Open Access

    PROCEEDINGS

    Topology Optimization for Conjugate Heat Transfer Problems Based on the k-omega Turbulence Model

    Ritian Ji1, Zhiguo Qu1,*, Hui Wang1, Binbin Jiao2, Yuxin Ye2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012210

    Abstract In this manuscript, a finite volume discrete topology optimization method based on the continuous adjoint method is proposed to simulate turbulent flow using the k-omega turbulence model for solving the topology optimization problem of conjugate heat transfer at high Reynolds number. The manuscript simulates the conjugate turbulent convective heat transfer problem at high Reynolds number with a set of Reynolds-Averaged Navier-Stokes (RANS) equations coupled with energy transport equations and control equations of the k-omega turbulence model, and implements the methodology by using the variable density method, interpolates the material values of thermal conductivity, heat capacity,… More >

  • Open Access

    REVIEW

    Accounting for Quadratic and Cubic Invariants in Continuum Mechanics–An Overview

    Artur V. Dmitrenko1,2,*, Vladislav M. Ovsyannikov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1925-1939, 2024, DOI:10.32604/fdmp.2024.048389 - 23 August 2024

    Abstract The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields. These equations contain derivatives of the first order with respect to time. The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero. Derivatives are used to derive the wave equation. The differential wave equation is second order in time. Therefore, increments of volume and increments of time in continuum mechanics should be considered as small but finite More >

  • Open Access

    ARTICLE

    Analysis of Convective Heat Exchanges and Fluid Dynamics in the Air Gap of a Discoid Technology Rotary Machine

    Abdellatif El Hannaoui1,*, Rachid Boutarfa1, Chadia Haidar2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 733-746, 2024, DOI:10.32604/fhmt.2024.050520 - 11 July 2024

    Abstract The proposed work focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system. The rotary cooling mechanism is achieved by the injection of two air jets, while the cavity geometry is characterized by a dimensionless parameter G. The numerical analysis primarily concentrated on the effect of flow velocity and rotation on the heat exchange process. More precisely, the range of analysis extends from the rotational Reynolds number to , while varying the Reynolds value of the jet in a range from to . To carry out More >

Displaying 1-10 on page 1 of 53. Per Page