Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network

    Jianyong Ao1, Yanping Li1, Shengqing Hu1, Songyu Gao2, Qi Yao2,*

    Energy Engineering, Vol.121, No.12, pp. 3825-3841, 2024, DOI:10.32604/ee.2024.055250 - 22 November 2024

    Abstract Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem, this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the generation mechanism of blade loads and the load theoretical calculation method based on material damage theory are analyzed, and four measurable operating state parameters related to blade loads are… More >

  • Open Access

    PROCEEDINGS

    A New Flow Regulation Strategy by Coupling Multiple Methods for High Efficiency Turbine with Wide Conditions

    Ziran Li1, Weihao Zhang2, Lei Qi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013344

    Abstract In the future, the wide speed and altitude range aviation engine will have features such as "wide range of high-bypass-ratio adjustment" and "wide range of high-pressure-ratio adjustment". Therefore, its turbine will work in a very wide range of operating conditions, with a large flow regulation range. Under conditions of high-rate flow regulation, existing flow control technologies can significantly reduce turbine efficiency. To support the performance and technical specifications of future engines, their low-pressure turbines need to maintain high operational efficiency within a flow regulation range and power output range that exceed those of current aircraft engines.
    More >

  • Open Access

    ARTICLE

    Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage

    Fengxia Shi1,2, Guangbiao Zhao1,*, Yucai Tang1, Dedong Ma1, Xiangyun Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2617-2636, 2024, DOI:10.32604/fdmp.2024.053186 - 28 October 2024

    Abstract To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which the flow rate is not constant, six hydraulic turbines with different blade numbers are considered. The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software. The ensuing results are compared with the outcomes of experimental tests. It is shown that the fluctuation range of the pressure coefficient increases with time, but the corresponding range for the transient hydraulic efficiency decreases gradually when… More >

  • Open Access

    REVIEW

    Parametric Analysis and Design Considerations for Micro Wind Turbines: A Comprehensive Review

    Dattu Ghane*, Vishnu Wakchaure

    Energy Engineering, Vol.121, No.11, pp. 3199-3220, 2024, DOI:10.32604/ee.2024.050952 - 21 October 2024

    Abstract Wind energy provides a sustainable solution to the ever-increasing demand for energy. Micro-wind turbines offer a promising solution for low-wind speed, decentralized power generation in urban and remote areas. Earlier researchers have explored the design, development, and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation. Researchers have investigated various aspects such as aerodynamic considerations, structural integrity, efficiency optimization to ensure reliable and cost-effective operation, blade design, generator selection, and control strategies to enhance the overall performance of the system. The objective of this paper is to provide a comprehensive design… More >

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    Influence of the Ambient Temperature on the Efficiency of Gas Turbines

    Mahdi Goucem*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2265-2279, 2024, DOI:10.32604/fdmp.2024.052365 - 23 September 2024

    Abstract In hot and arid regions like the Saharan area, effective methods for cooling and humidifying intake air are essential. This study explores the utilization of a water trickle cooler as a promising solution to meet this objective. In particular, the HASSI MESSAOUD area is considered as a testbed. The water trickle cooler is chosen for its adaptability to arid conditions. Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor. The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius, enhancing mass flow rate dynamics by 3 percent More >

  • Open Access

    REVIEW

    Review of Artificial Neural Networks for Wind Turbine Fatigue Prediction

    Husam AlShannaq, Aly Mousaad Aly*

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 707-737, 2024, DOI:10.32604/sdhm.2024.054731 - 20 September 2024

    Abstract Wind turbines have emerged as a prominent renewable energy source globally. Efficient monitoring and detection methods are crucial to enhance their operational effectiveness, particularly in identifying fatigue-related issues. This review focuses on leveraging artificial neural networks (ANNs) for wind turbine monitoring and fatigue detection, aiming to provide a valuable reference for researchers in this domain and related areas. Employing various ANN techniques, including General Regression Neural Network (GRNN), Support Vector Machine (SVM), Cuckoo Search Neural Network (CSNN), Backpropagation Neural Network (BPNN), Particle Swarm Optimization Artificial Neural Network (PSO-ANN), Convolutional Neural Network (CNN), and nonlinear autoregressive… More >

  • Open Access

    ARTICLE

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

    Zhan Wang1, Liang Li2,*, Long Wang1, Weidong Zhu3, Yinghui Li4, Echuan Yang5

    Energy Engineering, Vol.121, No.10, pp. 2981-3000, 2024, DOI:10.32604/ee.2024.048161 - 11 September 2024

    Abstract A dynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of a wind turbine. The dynamic pitch motion will affect the linear vibration characteristics of the blade. However, these influences have not been studied in previous research. In this paper, the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied. The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration, where the rigid pitch motion introduces a parametrically excited vibration to the beam. Partial differential equations More > Graphic Abstract

    Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

Displaying 1-10 on page 1 of 142. Per Page