Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

    Shude Fu1,2, Xinye Wu1,2,*, Wenjie Wang3, Yixin Hu1,3,*, Zhengke Li1, Feng Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2357-2382, 2024, DOI:10.32604/cmes.2023.031118 - 15 December 2023

    Abstract In this paper, given the shortcomings of jellyfish search algorithm with low search ability in the early stage and easy to fall into local optimal solution, this paper introduces adaptive weight function and elite strategy, improving the global search scope in the early stage and the ability to refine the local development in the later stage. In the numerical study, the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted, and the corresponding penalty method is used for constraint treatment. The test… More > Graphic Abstract

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

  • Open Access

    ARTICLE

    System Reliability Analysis for Truss Structures Based on Automatic Updated  Model

    Pengyu Chen, Cunbao Zhao*, He Yao, Junliang Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2057-2071, 2023, DOI:10.32604/cmes.2022.022394 - 20 September 2022

    Abstract Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure. This identification process involves updating the model for identifying the next potential failure members. Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently. This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts: reliability index of a single member, identification of dominant failure modes, and system-level reliability analysis for system reliability analysis… More > Graphic Abstract

    System Reliability Analysis for Truss Structures Based on Automatic Updated  Model

  • Open Access

    ARTICLE

    Shape and Size Optimization of Truss Structures under Frequency Constraints Based on Hybrid Sine Cosine Firefly Algorithm

    Ran Tao, Xiaomeng Yang, Huanlin Zhou*, Zeng Meng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 405-428, 2023, DOI:10.32604/cmes.2022.020824 - 24 August 2022

    Abstract Shape and size optimization with frequency constraints is a highly nonlinear problem with mixed design variables, non-convex search space, and multiple local optima. Therefore, a hybrid sine cosine firefly algorithm (HSCFA) is proposed to acquire more accurate solutions with less finite element analysis. The full attraction model of firefly algorithm (FA) is analyzed, and the factors that affect its computational efficiency and accuracy are revealed. A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm (SCA) is proposed to reduce the computational complexity and enhance the convergence rate. Then, the population… More >

  • Open Access

    ARTICLE

    An Efficient Differential Evolution for Truss Sizing Optimization Using AdaBoost Classifier

    Tran-Hieu Nguyen*, Anh-Tuan Vu

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 429-458, 2023, DOI:10.32604/cmes.2022.020819 - 24 August 2022

    Abstract Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses that must be conducted. Building a surrogate model to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem. However, most existing surrogate models have been designed based on regression techniques. This paper proposes a novel method, called CaDE, which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution (DE) optimization. The proposed method is separated into two stages. During… More >

  • Open Access

    ARTICLE

    Condition Evaluation in Steel Truss Bridge with Fused Hilbert Transform, Spectral Kurtosis, and Bandpass Filter

    Anshul Sharma1,*, Pardeep Kumar1, Hemant Kumar Vinayak2, Suresh Kumar Walia3

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 139-165, 2021, DOI:10.32604/sdhm.2021.012316 - 03 June 2021

    Abstract This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges. The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr, 20 km/hr, and 30 km/hr are analyzed using statistical features such as kurtosis, magnitude of peak-to-peak, root mean square, crest factor as well as impulse factor in time domain, and Stockwell transform in the time-frequency domain. The considered statistical features except for kurtosis show uncertain behavior. The Stockwell transform showed low-resolution outcomes when the More >

  • Open Access

    ARTICLE

    Mechanical Behavior of Light Trusses Made of Poplar Laminated Veneer Lumber and Connected with Bolts and Tooth Plates

    Yan Liu1, Yanfei Guo1, Xufeng Sun1,*, Meng Gong2

    Journal of Renewable Materials, Vol.8, No.9, pp. 1111-1127, 2020, DOI:10.32604/jrm.2020.09575 - 03 August 2020

    Abstract Poplar Laminated Veneer Lumber (Poplar LVL) is a new type of engineering materials with high strength, good reliability and small variability. Poplar LVL is manufactured from the fast-growing poplar, which is widely used in packaging, furniture and others, however, is rarely adopted in construction. In order to explore the feasibility of poplar LVL trusses in construction of roof, four 4.5-m-span Fink-and-Howe trusses were designed and assembled, which were made of poplar LVL with bolted- and tooth-plated connections. Vertical static loading on the upper chord joints of a truss was imposed by self-balancing test device. The… More >

  • Open Access

    ARTICLE

    MultivariableWavelet Finite Element for Plane Truss Analysis

    Xingwu Zhang1, Jixuan Liu2, Xuefeng Chen1,3, Zhibo Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.5, pp. 405-425, 2015, DOI:10.3970/cmes.2015.109.405

    Abstract Plane truss is widely used in mechanical engineering, building engineering and the aerospace engineering et al.. The precisely analysis of plane truss is very important for structural design and damage detection. Based on the generalized variational principle and B spline wavelet on the interval (BSWI), the multivariable wavelet finite element for plane truss is constructed. First, the wavelet axial rod element and the multivariable wavelet Euler beam element are constructed. Then the multivariable plane truss element can be obtained by combining these two elements together. Comparing with the traditional method, the generalized displacement and stress More >

  • Open Access

    ARTICLE

    Vibration and Buckling of Truss Core Sandwich Plates on An Elastic Foundation Subjected to Biaxial In-plane Loads

    J.W. Chen1, W. Liu1, X.Y. Su1,2

    CMC-Computers, Materials & Continua, Vol.24, No.2, pp. 163-182, 2011, DOI:10.3970/cmc.2011.024.163

    Abstract Truss-core sandwich plates are thin-walled structures comprising a truss core and two thin flat sheets. Since no direct analytical solution for the dynamic response of such structures exists, the complex three dimensional (3D) systems are idealized as equivalent 2D homogeneous continuous plates. The macroscopic effective bending and transverse shear stiffness are derived. Two representative core topologies are considered: pyramidal truss core and tetrahedral truss core. The first order shear deformation theory is used to study the flexural vibration of a simply supported sandwich plate. The buckling of the truss core plate on an elastic foundation More >

  • Open Access

    ARTICLE

    Optimum Design of Adaptive Truss Structures Using the Integrated Force Method

    R. Sedaghati, A. Suleman1, S. Dost, B. Tabarrok2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 259-272, 2001, DOI:10.3970/cmes.2001.002.259

    Abstract A structural analysis and optimization method is developed to find the optimal topology of adaptive determinate truss structures under various impact loading conditions. The objective function is based on the maximization of the structural strength subject to geometric constraints. The dynamic structural analysis is based on the integrated finite element force method and the optimization procedure is based on the Sequential Quadratic Programming (SQP) method. The equilibrium matrix is generated automatically through the finite element analysis and the compatibility matrix is obtained directly using the displacement-deformation relations and the Single Value Decomposition (SVD) technique. By More >

Displaying 1-10 on page 1 of 9. Per Page