Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    PROCEEDINGS

    Sound Absorption Performance of Micro-Perforated Plate Sandwich Structure Based on Triply Periodic Minimal Surface

    Pengfei Zhang1, Zhonghua Li1,*, Miao Zhao2, Fei Liu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011271

    Abstract The sandwich structure based on Triply periodic minimal surface (TPMS) is a lightweight and high-strength multifunctional composite material that combines the versatility of heat exchange, impact resistance, and energy absorption, and has been widely used in various fields such as aviation and aerospace. However, its sound absorption performance has not meant fully studied. In this study, a micro perforated plate Diamond sandwich structure (MPP-DSS) is proposed based on TPMS implicit function method, which is composed of solid panel, TPMS macro-ordered porous structure and micro-perforated plate. The sound absorption performance in the middle and low frequency… More >

  • Open Access

    PROCEEDINGS

    AI-Assisted Generative Inverse Design of Heterogeneous Meta-Biomaterials Based on TPMS for Biomimetic Tissue Engineering

    Xiaolong Zhu, Feng Chen, Yuntian Chen, Wei Zhu, Xiaoxiao Han*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012584

    Abstract Human tissues and organs exhibit not only intricate anatomical architectures but also spatially heterogeneous distributions of elastic modulus—for example, between cancellous and cortical bone, across the epidermis, dermis, and subcutaneous layers, and between healthy and fibrotic liver tissues. Conventional biomaterials often fail to replicate such mechanical heterogeneity, thereby limiting their capacity to recreate biomimetic physiological microenvironments essential for applications like tissue regeneration and disease modeling. Meta-biomaterials, artificially engineered through the rational structural design of continuous materials, have emerged as a promising class of materials owing to their highly tunable mechanical and biological properties. These attributes… More >

  • Open Access

    PROCEEDINGS

    Flow and Heat Transfer Performance of Porous Heat Exchanger Based on Conformal Geometry Design

    Yijin Zhang, Panding Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011144

    Abstract As a type of porous material with high porosity and a large surface-area-to-volume ratio, triply periodic minimal surface (TPMS) structures divide space into two non-interconnected parts. This increases the contact area while maintaining full connectivity and smoothness, which helps reduce flow resistance, making it naturally suited for applications in heat exchange designs. The advancement of additive manufacturing (AM) technology has contributed to the development of TPMS-based heat exchangers. However, due to the complexity of fluid heat exchanger designs, developing effective representations, models, and optimization schemes for TPMS structures in multi-fluid heat exchange problems is very… More >

  • Open Access

    ARTICLE

    Mechanical Performance of Additive Manufactured TPMS Lattice Structures Based on Topology Optimization

    Yizhou Wang1, Qinghai Zhao2,*, Guoqing Li1, Xudong Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 763-789, 2025, DOI:10.32604/cmes.2025.067363 - 31 July 2025

    Abstract Lattice structures have attracted extensive attention in the field of engineering materials due to their characteristics of lightweight and high strength. This paper combines topology optimization with additive manufacturing to investigate how pore shape in Triply Periodic Minimal Surface (TPMS) structures affects mechanical properties and energy absorption performance. The periodic lattice structures (Triangle lattice, rectangle lattice and Rectangle lattice) and aperiodic mixed structures are designed, including a variety of lattice structures such as circle-circle and triangle-triangle (CCTT), triangle-triangle and rectangle-rectangle (TTRR), circle-circle and rectangle-rectangle (CCRR), triangle-circle-circle-triangle (TCCT), rectangle-triangle-triangle-rectangle (RTTR) and rectangle-circle-circle-rectangle (RCCR). The anisotropy of… More >

  • Open Access

    PROCEEDINGS

    Triply Periodic Minimal Surface and Constant Mean Curvature Surfaces Formed Rib Structure’s Energy Absorption

    Quanqing Tao1,*, Qingping Ma1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011311

    Abstract This paper explores the design and fabrication of ultralight, rib-strengthened mechanical metamaterials, specifically focusing on thin-walled lattice structure and rib-formed lattice structure in micro 3D printing. The lattice structures, based on triply periodic minimal surfaces (TPMS) and constant mean curvature surfaces (CMCS), provide large surface areas and continuous internal channels with lightweight and multifunctional structural applications. Algorithm designed in this paper incorporates a dynamics relaxation solver to generate pure TPMS and ribbed CMCS, enhancing the lattice design of metamaterials and the use of parametric modeling facilitates the creation of metamaterial lattice models. The paper delves… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    ARTICLE

    Design and Mechanical Characterization of an S-Based TPMS Hollow Isotropic Cellular Structure

    Junjian Fu1,2, Pengfei Sun1, Yixian Du1,2,*, Lei Tian1, Qihua Tian1, Xiangman Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 695-713, 2022, DOI:10.32604/cmes.2022.017842 - 14 March 2022

    Abstract Cellular structures are regarded as excellent candidates for lightweight-design, load-bearing, and energy-absorbing applications. In this paper, a novel S-based TPMS hollow isotropic cellular structure is proposed with both superior load-bearing and energy-absorbing performances. The hollow cellular structure is designed with Boolean operation based on the Fischer-Koch (S) implicit triply periodic minimal surfaces (TPMS) with different level parameters. The anisotropy and effective elasticity properties of cellular structures are evaluated with the numerical homogenization method. The finite element method is further conducted to analyze the static mechanical performance of hollow cellular structure considering the size effect. The More >

  • Open Access

    ARTICLE

    Innovative Design and Additive Manufacturing of Regenerative Cooling Thermal Protection System Based on the Triply Periodic Minimal Surface Porous Structure

    Xinglong Wang1,2, Cheng Wang1,2, Xin Zhou1,*, Mingkang Zhang3, Peiyu Zhang1, Lei Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 495-508, 2020, DOI:10.32604/cmes.2020.09778 - 01 May 2020

    Abstract The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling, which are fundamental for the lightweight design and thermal protection of hypersonic vehicles. Triply periodic minimal surface (TPMS) is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics. In this study, test pieces were manufactured using Ti6Al4V lightweight material. We designed three types of porous test pieces, and the interior was filled with a TPMS lattice (Gyroid, Primitive, I-WP) with a porosity of 30%. All porous test… More >

Displaying 1-10 on page 1 of 8. Per Page