Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Tree-Based Solution Frameworks for Predicting Tunnel Boring Machine Performance Using Rock Mass and Material Properties

    Danial Jahed Armaghani1,*, Zida Liu2, Hadi Khabbaz1, Hadi Fattahi3, Diyuan Li2, Mohammad Afrazi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2421-2451, 2024, DOI:10.32604/cmes.2024.052210 - 31 October 2024

    Abstract Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These techniques are able to provide a good relationship between input(s)… More >

  • Open Access

    ARTICLE

    Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-Based Models

    Feezan Ahmad1, Xiaowei Tang1, Jilei Hu2,*, Mahmood Ahmad3,4, Behrouz Gordan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 455-487, 2023, DOI:10.32604/cmes.2023.025993 - 23 April 2023

    Abstract Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This paper’s reduced error pruning (REP) tree and random tree (RT) models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering. The data set of this study includes five parameters, namely slope height, slope angle, cohesion, internal friction angle, and peak ground acceleration. The available data is split into two categories: training (75%) and test (25%) sets. The output of the RT and REP tree models is evaluated using performance measures including accuracy (Acc), Matthews… More >

Displaying 1-10 on page 1 of 2. Per Page