Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (484)
  • Open Access

    ARTICLE

    Treatment patterns for genitourinary syndrome of menopause: a TriNetX analysis

    Anushka Ghosh, Maria J. D’Amico, Yash B. Shah, Whitney R. Smith, Mihir S. Shah, Costas D. Lallas, Alana M. Murphy*

    Canadian Journal of Urology, Vol.32, No.6, pp. 627-632, 2025, DOI:10.32604/cju.2025.067575 - 30 December 2025

    Abstract Background: Genitourinary syndrome of menopause (GSM) is a highly prevalent, underdiagnosed condition that can significantly impair quality of life (QoL). This study evaluates real-world treatment trends for GSM to better understand current management practices and highlight ongoing gaps in care. The background is in a different font than the rest of the abstract. Methods: We queried the TriNetX database for patients with a diagnosis of postmenopausal atrophic vaginitis (ICD N95.2) and treatment information from 2004–2024. A combination of RxNorm and International Classification of Diseases-10 (ICD) codes was used to classify disease and treatment type, including… More >

  • Open Access

    CASE REPORT

    Successful treatment of rare vaso-vesical fistula with minimally invasive measures despite prior history of radiotherapy: a case report

    Jordan L. Mendelson1,*, Jordan Kassab1, Phillip Westbrook1, Katie Yang2, Anthony Corcoran1

    Canadian Journal of Urology, Vol.32, No.6, pp. 673-676, 2025, DOI:10.32604/cju.2025.063770 - 30 December 2025

    Abstract Stereotactic body radiotherapy (SBRT) for prostate cancer is a generally well-tolerated treatment but can rarely lead to complications such as fistula formation. We report a 69-year-old male on maintenance ibrutinib for chronic lymphocytic leukemia who developed a fistula between his bladder and vas deferens in the setting of ascending scrotal infection. Despite his prior history of SBRT, the fistula was successfully treated with minimally invasive measures. A combination of abscess debridement, urinary diversion, and broad-spectrum antibiotics helped to achieve fistula resolution. The unique presentation described herein highlights the importance of early aggressive intervention for source More >

  • Open Access

    ARTICLE

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

    Pooja Yadav1,*, Ramin Farnood2, Vivek Kumar1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1181-1197, 2025, DOI:10.32604/jpm.2025.072564 - 26 December 2025

    Abstract Heavy metal contamination in water sources is a widespread global concern, particularly in developing nations, with various treatment approaches under extensive scientific investigation. In the present study, we fabricated electrospun composite polyvinylidene fluoride (PVDF) nanofibrous membranes exhibiting hierarchical surface roughness and superhydrophobicity for the removal of heavy metal ions via vacuum membrane distillation (VMD) process. The membranes were prepared by incorporating optimized dosing of silica nanoparticles, followed by a two-step membrane modification approach. These membranes exhibited notable characteristics, including elevated water contact angle (152.8 ± 3.2°), increased liquid entry pressure (127 ± 6 kPa), and… More > Graphic Abstract

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

  • Open Access

    REVIEW

    Self-Assembly of Active Ingredients in Natural Traditional Chinese Medicine as the Controlled Drug Delivery and Targeted Treatment

    Huaao Jiang#, Bianyifan Xu#, Yang Gui, Ying Xia, Xu Yin, Chao Zhang, Yue Meng, Xin Yu, Yan Wang, Hongmei Xia*

    Journal of Polymer Materials, Vol.42, No.4, pp. 993-1033, 2025, DOI:10.32604/jpm.2025.071740 - 26 December 2025

    Abstract Traditional Chinese medicine (TCM) has a long history and is widely used to prevent and treat various diseases. With the development of modern technology, an increasing number of active ingredients—such as curcumin, berberine, and baicalin—have been identified and validated within TCM. Concurrently, the emergence of nanotechnology has led to the discovery of numerous nanomedicines based on the self-assembly of active ingredients from TCM. Polymer materials can enhance the bioavailability of these active compounds and reduce their toxic side effects. Moreover, compared to synthetic polymers, natural polymer materials offer advantages such as non-toxicity and high biosafety… More >

  • Open Access

    ARTICLE

    Highly Pure Water-Soluble Aspen Wood Hemicelluloses Derived by Catalytic Peracetic Treatment and Their Antioxidant and Flocculation Activity

    Valentina Sergeevna Borovkova1,2,*, Yuriy Nikolaevich Malyar1,2, Vladislav Alexandrovich Ionin1,2, Alexander Sergeevich Kazachenko1,2

    Journal of Renewable Materials, Vol.13, No.12, pp. 2281-2296, 2025, DOI:10.32604/jrm.2025.02025-0067 - 23 December 2025

    Abstract The valorization of plant biomass towards high-value chemicals is a global trend aimed at solving the problem of the huge accumulation of lignocellulosic waste. Plant polysaccharides are natural polymers that make up about 20% by weight of biomass, with a unique variety of structures and properties that depend on the type of raw materials and the method of their extraction. In this study, the effect of variability of the oxidative delignification process conditions in the «acetic acid-hydrogen peroxide-water-(NH4)6Mo7O24» on the extraction and properties of aspen (Populus tremula) wood hemicelluloses was investigated for the first time. The developed… More > Graphic Abstract

    Highly Pure Water-Soluble Aspen Wood Hemicelluloses Derived by Catalytic Peracetic Treatment and Their Antioxidant and Flocculation Activity

  • Open Access

    REVIEW

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

    Somayah Albaradei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2937-2970, 2025, DOI:10.32604/cmes.2025.072584 - 23 December 2025

    Abstract Cancer deaths and new cases worldwide are projected to rise by 47% by 2040, with transitioning countries experiencing an even higher increase of up to 95%. Tumor severity is profoundly influenced by the timing, accuracy, and stage of diagnosis, which directly impacts clinical decision-making. Various biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, contribute to cancer development. The emergence of multi-omics technologies has transformed cancer research by revealing molecular alterations across multiple biological layers. This integrative approach supports the notion that cancer is fundamentally driven by such alterations, enabling the discovery of molecular signatures… More > Graphic Abstract

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

  • Open Access

    ARTICLE

    Fabrication and characterization of Cu (In, Ga) Se2 thin films by electrodeposition: optimization of the thermal treatment with selenium and mechanical disturbance technique

    A. Ledesma-Juáreza, J. F. Quintero-Guerrerob, A. M. Fernándeza,*

    Chalcogenide Letters, Vol.22, No.2, pp. 97-108, 2025, DOI:10.15251/CL.2025.222.97

    Abstract The evaporation technique fabricates solar cells using the Cu(In, Ga)Se2 (CIGS) absorber. This technique has strong limitations in preparing this absorber in a large area, necessitating the electrodeposition technique. However, the morphology and crystallinity of this absorber need to be sufficiently adequate to guarantee proper collection of charge carriers since a cauliflower-type growth is favored. This underscores the need for modifications during the synthesis, thermal treatments, and post-synthesis to improve the morphology and crystallinity, a complex and significant aspect of our research. This work discusses the structural, atomic composition, morphological, and optical results obtained for samples More >

  • Open Access

    ARTICLE

    Influence of heat treatment on microwave dielectric properties of erbium doped borotellurite glass ceramics

    S. Othmana, Y. H. Luab, E. S. Sazalia,, Y. S. Yapb,, R. Hisamc

    Chalcogenide Letters, Vol.22, No.5, pp. 451-459, 2025, DOI:10.15251/CL.2025.225.451

    Abstract High-performance glass-ceramics are increasingly explored for their suitability in high-frequency dielectric applications, presenting a significant challenge in materials science. A primary focus has been allocated to investigating borotellurite glasses operating at frequencies below 15 MHz. Borotellurite glasses with the composition 69TeO-10BO3-10PbO-10ZnO-1ErO3 were fabricated via the melt-quenching method. This study examines the effects of heat treatment durations (1–24 hours) on these glasses. Variations in density, molar volume, structure, and dielectric properties were attributed to changes in non-bridging oxygen bonding resulting from the heat treatments. X-ray diffraction analysis confirmed the amorphous nature of the as-quenched glass. Morphological changes More >

  • Open Access

    ARTICLE

    Development of AgCuS nanostructures with optimized photocatalytic efficiency under solar irradiation

    S. Younus, N. Amin*, A. Ali, K. Mahmood

    Chalcogenide Letters, Vol.22, No.10, pp. 905-915, 2025, DOI:10.15251/CL.2025.2210.905

    Abstract Wastewater generated by the textile industry contains high levels of various pollutants. Advanced conventional methods, such as chemical and electrical treatments, are effective in addressing these contaminants. However, the significant operational and capital costs associated with these conventional systems limit their accessibility for industrial stakeholders. In contrast, more economically viable methods tend to be less efficient. This study aims to identify a suitable approach for integrating photocatalytic degradation (PCD) with a low-cost method to enhance the cost-effectiveness of wastewater treatment processes in the textile sector. The study utilized silver copper sulfide (AgCuS) nanocomposites as a… More >

  • Open Access

    REVIEW

    Immune Checkpoint Inhibitors Combined with Oncolytic Virotherapy: Synergy, Heterogeneity, and Safety in Cancer Treatment

    Yi Feng1,#, Haoxin Yang2, Guicai Liang1, Jun Chen3, Tao Li1, Yingjuan Wang4, Jilin Chang1, Yan Li3, Meng Yang1, Xilong Zhou1, Zhiqiang Wang5,*, Chunlei Ge1,*

    Oncology Research, Vol.33, No.12, pp. 3801-3836, 2025, DOI:10.32604/or.2025.067824 - 27 November 2025

    Abstract Immune checkpoint inhibitor (ICI) has limited efficacy in the treatment of immune “cold” tumors. Due to insufficient T cell infiltration and heterogeneous programmed death ligand 1 (PD-L1) expression, the ORR is only 5%–8% compared with 30%–40% of “hot” tumors. This article reviews the synergistic mechanism, clinical efficacy and optimization strategy of oncolytic virus (OVs) combined with ICIs in the treatment of refractory malignant tumors. Systematic analysis of mechanistic interactions across tumor types and clinical trial data demonstrates that OVs transform the immunosuppressive microenvironment by inducing immunogenic cell death and activating innate immunity. Concurrently, ICIs enhance… More >

Displaying 1-10 on page 1 of 484. Per Page