Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Simulation and Traffic Safety Assessment of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action

    Liangwei Jiang1,2, Wei Zhang2, Hongyin Yang1,2,3,*, Xiucheng Zhang1, Jinghan Wu2, Zhangjun Liu2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 835-851, 2024, DOI:10.32604/sdhm.2024.051125 - 20 September 2024

    Abstract Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis, a combined simulation system of train-bridge coupling system (TBCS) under earthquake (MAETB) is developed based on the cooperative work of MATLAB and ANSYS. The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway. The influence of different driving speeds, seismic wave intensities, and traveling wave effects on the dynamic response of the TBCS under More >

  • Open Access

    ARTICLE

    Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting

    Hua Leng1, Silin He2, Jian Qiu3, Feng Liu4,*, Xinfei Huang4, Jiran Zhu2

    Energy Engineering, Vol.121, No.1, pp. 77-94, 2024, DOI:10.32604/ee.2023.028340 - 27 December 2023

    Abstract The distribution network exhibits complex structural characteristics, which makes fault localization a challenging task. Especially when a branch of the multi-branch distribution network fails, the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system. In this paper, the multi-branch mainline is decomposed into single branch lines, transforming the complex multi-branch fault location problem into a double-ended fault location problem. Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines, the endpoint reference time difference matrix S… More >

  • Open Access

    ARTICLE

    Adaptive Reclosing Scheme Based on Traveling Wave Injection For Multi-Terminal dc Grids

    Peng Han1,*, Xinchen Zhao1, Yannan Wu1, Zhiyu Zhou2, Qi Qi3

    Energy Engineering, Vol.120, No.5, pp. 1271-1285, 2023, DOI:10.32604/ee.2023.027489 - 20 February 2023

    Abstract The hybrid dc circuit breaker (HCB) has the advantages of fast action speed and low operating loss, which is an ideal method for fault isolation of multi-terminal dc grids. For multi-terminal dc grids that transmit power through overhead lines, HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults. To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs, an adaptive reclosing scheme based on traveling wave… More >

  • Open Access

    ARTICLE

    A Study of Traveling Wave Structures and Numerical Investigation of Two-Dimensional Riemann Problems with Their Stability and Accuracy

    Abdulghani Ragaa Alharbi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2193-2209, 2023, DOI:10.32604/cmes.2022.018445 - 20 September 2022

    Abstract The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena, for instance, tsunamis in the oceans. This paper focuses on executing the generalized exponential rational function approach and some numerical methods to obtain a distinct range of traveling wave structures and numerical results of the two-dimensional Riemann problems. The stability of obtained traveling wave solutions is analyzed by satisfying the constraint conditions of the Hamiltonian system. Numerical simulations are investigated via the finite difference method to verify the accuracy of the obtained results. To extract the approximation solutions to More >

  • Open Access

    ARTICLE

    Modeling of Dark Solitons for Nonlinear Longitudinal Wave Equation in a Magneto-Electro-Elastic Circular Rod

    Hulya Durur1, Asıf Yokuş2, Doğan Kaya3, Hijaz Ahmad4,*

    Sound & Vibration, Vol.55, No.3, pp. 241-251, 2021, DOI:10.32604/sv.2021.014157 - 15 July 2021

    Abstract In this paper, sub equation and expansion methods are proposed to construct exact solutions of a nonlinear longitudinal wave equation (LWE) in a magneto-electro-elastic circular rod. The proposed methods have been used to construct hyperbolic, rational, dark soliton and trigonometric solutions of the LWE in the magneto-electro-elastic circular rod. Arbitrary values are given to the parameters in the solutions obtained. 3D, 2D and contour graphs are presented with the help of a computer package program. Solutions attained by symbolic calculations revealed that these methods are effective, reliable and simple mathematical tool for finding solutions of More >

Displaying 1-10 on page 1 of 5. Per Page