Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Detection and Recognition of Spray Code Numbers on Can Surfaces Based on OCR

    Hailong Wang*, Junchao Shi

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1109-1128, 2025, DOI:10.32604/cmc.2024.057706 - 03 January 2025

    Abstract A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition. In the coding number detection stage, Differentiable Binarization Network is used as the backbone network, combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect. In terms of text recognition, using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate… More >

  • Open Access

    ARTICLE

    On Aircraft Lift and Drag Reduction Using V Shaped Riblets

    Zihai Geng1,2,*, Jinsheng Cai1, Yubiao Jiang1,2, Weiguo Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 899-915, 2021, DOI:10.32604/fdmp.2021.012108 - 05 July 2021

    Abstract Reducing drag during take-off and nominal (cruise) conditions is a problem of fundamental importance in aeronautical engineering. Existing studies have demonstrated that v-shaped symmetrical riblets can effectively be used for turbulence control, with those with dimensionless depth h+ = 15 and dimensionless width s+ = 15 having the best drag reduction effect. In the present study, experimental tests have been conducted considering two models of the same size, one with smooth surface, the other with v-shaped riblets of the h+ = 15 and s+ = 15 type. The results show that for an angle of attack in More >

  • Open Access

    ABSTRACT

    A Multicomponent Transport Model for Proton Exchange Membrane Fuel Cells Using Ordered Membrane Electrode Assembly

    Jiarong Liang1, Yinshi Li1,2,*, Jinghui Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 168-168, 2019, DOI:10.32604/icces.2019.05679

    Abstract Designing cost-effective electrodes is essential to the development of proton exchange membrane fuel cells (PEMFCs). Therein, the highly ordered electrode has been proved to be effective by reducing Pt loading. To insight into the enhancement mechanism of ordered membrane electrode assembly (OMEA), in this work, a two-dimensional steady-state multicomponent mass-transport model is developed, in which a cylindrical structure model is adapted to account for the diffusion characteristics of reactants in ordered catalyst layer. Moreover, the overpotential corresponding to mass and charge transport limitations are calculated in this model based on concentration distribution and Ohm’s law,… More >

  • Open Access

    ARTICLE

    A transport model based on kinetic theory for water vapor separation in hollow fiber membranes

    D. Bergmair1,2, S. J. Metz1, H. C. de Lange2, A. A. van Steenhoven2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.1, pp. 1-15, 2013, DOI:10.3970/cmes.2013.091.001

    Abstract A method to predict the permeation of water vapor, present in a laminar flowing humid carrier gas, through a hollow fiber membrane is presented. The method uses simulation particles that move like molecules, according to the kinetic gas theory, but carry the physical properties of an ensemble of molecules which they statistically represent. With this approach an ideal operational window for membrane modules can be found and parameters tested for, can be varied over orders of magnitude. The results show that the right dimensioning is essential for the efficient use of the membrane area. More >

  • Open Access

    ARTICLE

    A Fully Coupled Poroelastic Reactive-Transport Model of Cartilage

    Lihai Zhang*, Bruce S. Gardiner*, David W. Smith*, Peter Pivonka*, Alan Grodzinsky

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 133-154, 2008, DOI:10.3970/mcb.2008.005.133

    Abstract Cartilage maintains its integrity in a hostile mechanical environment. This task is made more difficult because cartilage has no blood supply, and so nutrients and growth factors need to be transported greater distances than normal to reach cells several millimetres from the cartilage surface. The chondrocytes embedded within the extracellular matrix (ECM) are essential for maintaining the mechanical integrity of the ECM, through a balance of degradation and synthesis of collagen and proteoglycans. A chondrocyte senses various chemical and mechanical signals in its local microenvironment, responding by appropriate adaption of the local ECM. Clearly a… More >

Displaying 1-10 on page 1 of 5. Per Page