Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

  • Open Access

    ARTICLE

    Improving Low-Resource Machine Translation Using Reinforcement Learning from Human Feedback

    Liqing Wang*, Yiheng Xiao

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 619-631, 2024, DOI:10.32604/iasc.2024.052971 - 06 September 2024

    Abstract Neural Machine Translation is one of the key research directions in Natural Language Processing. However, limited by the scale and quality of parallel corpus, the translation quality of low-resource Neural Machine Translation has always been unsatisfactory. When Reinforcement Learning from Human Feedback (RLHF) is applied to low-resource machine translation, commonly encountered issues of substandard preference data quality and the higher cost associated with manual feedback data. Therefore, a more cost-effective method for obtaining feedback data is proposed. At first, optimizing the quality of preference data through the prompt engineering of the Large Language Model (LLM), More >

  • Open Access

    ARTICLE

    Construction and Validity of Chinese Translation of the Universal Mental Health Literacy Scale for Adolescents

    Qi Wang1,#, Qi Wang1,#, Yuxuan Ji1, Kexu Chen1, Kaiyun Li1,*, Fanlu Jia1, Ting Peng2

    International Journal of Mental Health Promotion, Vol.26, No.8, pp. 671-677, 2024, DOI:10.32604/ijmhp.2024.053127 - 30 August 2024

    Abstract Background: In this study, the Universal Mental Health Literacy Scale for Adolescents (UMHL-A) was revised and tested for its reliability and validity in Chinese middle school students, thus establishing a useful tool for assessing the mental health of individuals in this occupation. Methods: Our sample comprised 1208 junior high school students (58.85% male), aged between 11 and 15 years old. The Chinese version of the scale includes a mental health attitude subscale and mental health knowledge subscale, including attitudes towards seeking help, attitudes related to stigma, general mental health knowledge, and knowledge about specific mental… More >

  • Open Access

    ARTICLE

    Enhancing Communication Accessibility: UrSL-CNN Approach to Urdu Sign Language Translation for Hearing-Impaired Individuals

    Khushal Das1, Fazeel Abid2, Jawad Rasheed3,4,*, Kamlish5, Tunc Asuroglu6,*, Shtwai Alsubai7, Safeeullah Soomro8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 689-711, 2024, DOI:10.32604/cmes.2024.051335 - 20 August 2024

    Abstract Deaf people or people facing hearing issues can communicate using sign language (SL), a visual language. Many works based on rich source language have been proposed; however, the work using poor resource language is still lacking. Unlike other SLs, the visuals of the Urdu Language are different. This study presents a novel approach to translating Urdu sign language (UrSL) using the UrSL-CNN model, a convolutional neural network (CNN) architecture specifically designed for this purpose. Unlike existing works that primarily focus on languages with rich resources, this study addresses the challenge of translating a sign language… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications

    Tianzhe Jiao, Chaopeng Guo, Xiaoyue Feng, Yuming Chen, Jie Song*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1-35, 2024, DOI:10.32604/cmc.2024.053204 - 18 July 2024

    Abstract Multi-modal fusion technology gradually become a fundamental task in many fields, such as autonomous driving, smart healthcare, sentiment analysis, and human-computer interaction. It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities. Under complex scenes, multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions. However, achieving outstanding performance is challenging because of equipment performance limitations, missing information, and data noise. This paper comprehensively reviews existing methods based on multi-modal fusion techniques and completes a detailed and in-depth analysis.… More >

  • Open Access

    ARTICLE

    The Social Networking Addiction Scale: Translation and Validation Study among Chinese College Students

    Siyuan Bi1, Junfeng Yuan1,2, Lin Luo1,2,3,*

    International Journal of Mental Health Promotion, Vol.26, No.1, pp. 51-60, 2024, DOI:10.32604/ijmhp.2023.041614 - 05 February 2024

    Abstract Purpose: The core component theory of addiction behavior provides a multidimensional theoretical model for measuring social networking addiction. Based on this theoretical model, the Social Networking Addiction Scale (SNAS) was developed. The aim of this study was to test the psychometric properties of the Chinese version of the SNAS (SNAS-C). Methods: This study used a sample of 3383 Chinese university students to conduct confirmatory factor analysis (CFA) to explore the structural validity of the SNAS-C. This study examined the Pearson correlations between the six subscales of the SNAS-C (i.e., salience, mood modification, tolerance, withdrawal symptoms,… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised MRI Synthetic CT Image Generation Framework with Registration Network

    Liwei Deng1, Henan Sun1, Jing Wang2, Sijuan Huang3, Xin Yang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2271-2287, 2023, DOI:10.32604/cmc.2023.039062 - 29 November 2023

    Abstract In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest, making radiotherapy based only on MR images possible. In this paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed… More >

  • Open Access

    REVIEW

    Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy

    ELYN AMIELA SALLEH1, YEONG YEH LEE2, ANDEE DZULKARNAEN ZAKARIA3, NUR ASYILLA CHE JALIL4, MARAHAINI MUSA1,*

    BIOCELL, Vol.47, No.10, pp. 2233-2244, 2023, DOI:10.32604/biocell.2023.030541 - 08 November 2023

    Abstract Colorectal cancer (CRC) is a major global health concern. Accumulation of cancer-associated fibroblasts (CAFs) in CRC is associated with poor prognosis and disease recurrence. CAFs are the main cellular component of the tumor microenvironment. CAF-tumor cell interplay, which is facilitated by various secretomes, drives colorectal carcinogenesis. The complexity of CAF populations contributes to the heterogeneity of CRC and influences patient survival and treatment response. Due to their significant roles in colorectal carcinogenesis, different clinical applications utilizing or targeting CAFs have been suggested. Circulating CAFs (cCAFs) which can be detected in blood samples, have been proposed… More > Graphic Abstract

    Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy

  • Open Access

    ARTICLE

    Image to Image Translation Based on Differential Image Pix2Pix Model

    Xi Zhao1, Haizheng Yu1,*, Hong Bian2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 181-198, 2023, DOI:10.32604/cmc.2023.041479 - 31 October 2023

    Abstract In recent years, Pix2Pix, a model within the domain of GANs, has found widespread application in the field of image-to-image translation. However, traditional Pix2Pix models suffer from significant drawbacks in image generation, such as the loss of important information features during the encoding and decoding processes, as well as a lack of constraints during the training process. To address these issues and improve the quality of Pix2Pix-generated images, this paper introduces two key enhancements. Firstly, to reduce information loss during encoding and decoding, we utilize the U-Net++ network as the generator for the Pix2Pix model,… More >

  • Open Access

    ARTICLE

    Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN

    Seema Sabharwal1,2,*, Priti Singla1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2567-2582, 2023, DOI:10.32604/iasc.2023.035497 - 11 September 2023

    Abstract Sign language is used as a communication medium in the field of trade, defence, and in deaf-mute communities worldwide. Over the last few decades, research in the domain of translation of sign language has grown and become more challenging. This necessitates the development of a Sign Language Translation System (SLTS) to provide effective communication in different research domains. In this paper, novel Hybrid Adaptive Gaussian Thresholding with Otsu Algorithm (Hybrid-AO) for image segmentation is proposed for the translation of alphabet-level Indian Sign Language (ISLTS) with a 5-layer Convolution Neural Network (CNN). The focus of this… More >

Displaying 1-10 on page 1 of 47. Per Page