Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Fake News Encoder Classifier (FNEC) for Online Published News Related to COVID-19 Vaccines

    Asma Qaiser1, Saman Hina1, Abdul Karim Kazi1,*, Saad Ahmed2, Raheela Asif3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 73-90, 2023, DOI:10.32604/iasc.2023.036784

    Abstract In the past few years, social media and online news platforms have played an essential role in distributing news content rapidly. Consequently. verification of the authenticity of news has become a major challenge. During the COVID-19 outbreak, misinformation and fake news were major sources of confusion and insecurity among the general public. In the first quarter of the year 2020, around 800 people died due to fake news relevant to COVID-19. The major goal of this research was to discover the best learning model for achieving high accuracy and performance. A novel case study of the Fake News Classification using… More >

  • Open Access

    ARTICLE

    An Efficient Text-Independent Speaker Identification Using Feature Fusion and Transformer Model

    Arfat Ahmad Khan1, Rashid Jahangir2,*, Roobaea Alroobaea3, Saleh Yahya Alyahyan4, Ahmed H. Almulhi3, Majed Alsafyani3, Chitapong Wechtaisong5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4085-4100, 2023, DOI:10.32604/cmc.2023.036797

    Abstract Automatic Speaker Identification (ASI) involves the process of distinguishing an audio stream associated with numerous speakers’ utterances. Some common aspects, such as the framework difference, overlapping of different sound events, and the presence of various sound sources during recording, make the ASI task much more complicated and complex. This research proposes a deep learning model to improve the accuracy of the ASI system and reduce the model training time under limited computation resources. In this research, the performance of the transformer model is investigated. Seven audio features, chromagram, Mel-spectrogram, tonnetz, Mel-Frequency Cepstral Coefficients (MFCCs), delta MFCCs, delta-delta MFCCs and spectral… More >

  • Open Access

    ARTICLE

    A Deep Learning Ensemble Method for Forecasting Daily Crude Oil Price Based on Snapshot Ensemble of Transformer Model

    Ahmed Fathalla1, Zakaria Alameer2, Mohamed Abbas3, Ahmed Ali4,5,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 929-950, 2023, DOI:10.32604/csse.2023.035255

    Abstract The oil industries are an important part of a country’s economy. The crude oil’s price is influenced by a wide range of variables. Therefore, how accurately can countries predict its behavior and what predictors to employ are two main questions. In this view, we propose utilizing deep learning and ensemble learning techniques to boost crude oil’s price forecasting performance. The suggested method is based on a deep learning snapshot ensemble method of the Transformer model. To examine the superiority of the proposed model, this paper compares the proposed deep learning ensemble model against different machine learning and statistical models for… More >

  • Open Access

    ARTICLE

    Leveraging Readability and Sentiment in Spam Review Filtering Using Transformer Models

    Sujithra Kanmani*, Surendiran Balasubramanian

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1439-1454, 2023, DOI:10.32604/csse.2023.029953

    Abstract Online reviews significantly influence decision-making in many aspects of society. The integrity of internet evaluations is crucial for both consumers and vendors. This concern necessitates the development of effective fake review detection techniques. The goal of this study is to identify fraudulent text reviews. A comparison is made on shill reviews vs. genuine reviews over sentiment and readability features using semi-supervised language processing methods with a labeled and balanced Deceptive Opinion dataset. We analyze textual features accessible in internet reviews by merging sentiment mining approaches with readability. Overall, the research improves fake review screening by using various transformer models such… More >

  • Open Access

    ARTICLE

    Efficient Image Captioning Based on Vision Transformer Models

    Samar Elbedwehy1,*, T. Medhat2, Taher Hamza3, Mohammed F. Alrahmawy3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1483-1500, 2022, DOI:10.32604/cmc.2022.029313

    Abstract Image captioning is an emerging field in machine learning. It refers to the ability to automatically generate a syntactically and semantically meaningful sentence that describes the content of an image. Image captioning requires a complex machine learning process as it involves two sub models: a vision sub-model for extracting object features and a language sub-model that use the extracted features to generate meaningful captions. Attention-based vision transformers models have a great impact in vision field recently. In this paper, we studied the effect of using the vision transformers on the image captioning process by evaluating the use of four different… More >

Displaying 1-10 on page 1 of 5. Per Page  

Share Link