Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    Impact of Land Requisition for Military Training during World War II on Farming and the South Downs Landscape, England

    Nigel Walford*

    Revue Internationale de Géomatique, Vol.33, pp. 445-464, 2024, DOI:10.32604/rig.2024.054535 - 25 October 2024

    Abstract The impact of World War II on the physical landscape of British towns and cities as a result of airborne assault is well known. However, less newsworthy but arguably no less significant is the impact of the war on agriculture and the countryside, especially in South-East England. This paper outlines the building of an historical Geographical Information System (GIS) from different data sources including the National Farm Survey (NFS), Luftwaffe and Royal Air Force (RAF) aerial photographs and basic topographic mapping for the South Downs in East and West Sussex. It explores the impact and… More >

  • Open Access

    ARTICLE

    The Influence of Chemical Admixtures on the Fluidity, Viscosity and Rheological Properties of Ultra-High Performance Concrete

    Jin Yang1,2, Hailong Zhao1, Jingyi Zeng1, Ying Su1,2, Mengdi Zhu1, Xingyang He1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2163-2181, 2024, DOI:10.32604/fdmp.2024.055448 - 23 September 2024

    Abstract To achieve higher strength and better durability, ultra-high performance concrete (UHPC) typically employs a relatively small water-binder ratio. However, this generally leads to an undesired increase in the paste viscosity. In this study, the effects of liquid and powder polycarboxylate superplasticizers (PCE) on UHPC are compared and critically discussed. Moreover, the following influential factors are considered: air-entraining agents (AE), slump retaining agents (SA), and defoaming agents (DF) and the resulting flow characteristics, mechanical properties, and hydration properties are evaluated assuming UHPC containing 8‰ powder PCE (PCE-based UHPC). It is found that the spread diameter of… More >

  • Open Access

    ARTICLE

    Building a Smart Management System for the Field Training Course at the Faculty of Specific Education-Mansoura University

    Soha A. Shaban*, Amira A. Atta, Dalia L. Elsheweikh

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1213-1250, 2024, DOI:10.32604/csse.2024.052603 - 13 September 2024

    Abstract Field training is the backbone of the teacher-preparation process. Its importance stems from the goals that colleges of education aim to achieve, which include bridging the gap between theory and practice and aligning with contemporary educational trends during teacher training. Currently, trainee students attendance in field training is recorded manually through signatures on attendance sheets. However, this method is prone to impersonation, time wastage, and misplacement. Additionally, traditional methods of evaluating trainee students are often susceptible to human errors during the evaluation and scoring processes. Field training also lacks modern technology that the supervisor can… More >

  • Open Access

    ARTICLE

    Enhanced UAV Pursuit-Evasion Using Boids Modelling: A Synergistic Integration of Bird Swarm Intelligence and DRL

    Weiqiang Jin1,#, Xingwu Tian1,#, Bohang Shi1, Biao Zhao1,*, Haibin Duan2, Hao Wu3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3523-3553, 2024, DOI:10.32604/cmc.2024.055125 - 12 September 2024

    Abstract The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning (DRL). The Boids model, which simulates collective… More >

  • Open Access

    ARTICLE

    Mathematical Named Entity Recognition Based on Adversarial Training and Self-Attention

    Qiuyu Lai1,2, Wang Kang3, Lei Yang1,2, Chun Yang1,2,*, Delin Zhang2,*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 649-664, 2024, DOI:10.32604/iasc.2024.051724 - 06 September 2024

    Abstract Mathematical named entity recognition (MNER) is one of the fundamental tasks in the analysis of mathematical texts. To solve the existing problems of the current neural network that has local instability, fuzzy entity boundary, and long-distance dependence between entities in Chinese mathematical entity recognition task, we propose a series of optimization processing methods and constructed an Adversarial Training and Bidirectional long short-term memory-Selfattention Conditional random field (AT-BSAC) model. In our model, the mathematical text was vectorized by the word embedding technique, and small perturbations were added to the word vector to generate adversarial samples, while More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622 - 20 August 2024

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

  • Open Access

    REVIEW

    Unlocking the Potential: A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks

    Ebtesam Ahmad Alomari*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 43-85, 2024, DOI:10.32604/cmes.2024.052256 - 20 August 2024

    Abstract As Natural Language Processing (NLP) continues to advance, driven by the emergence of sophisticated large language models such as ChatGPT, there has been a notable growth in research activity. This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain. This review paper systematically investigates the role of ChatGPT in diverse NLP tasks, including information extraction, Name Entity Recognition (NER), event extraction, relation extraction, Part of Speech (PoS) tagging, text classification, sentiment analysis, emotion recognition and text annotation. The novelty of this work lies in its… More >

  • Open Access

    ARTICLE

    Improving Diversity with Multi-Loss Adversarial Training in Personalized News Recommendation

    Ruijin Xue1,2, Shuang Feng1,2,*, Qi Wang1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3107-3122, 2024, DOI:10.32604/cmc.2024.052600 - 15 August 2024

    Abstract Users’ interests are often diverse and multi-grained, with their underlying intents even more so. Effectively capturing users’ interests and uncovering the relationships between diverse interests are key to news recommendation. Meanwhile, diversity is an important metric for evaluating news recommendation algorithms, as users tend to reject excessive homogeneous information in their recommendation lists. However, recommendation models themselves lack diversity awareness, making it challenging to achieve a good balance between the accuracy and diversity of news recommendations. In this paper, we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity. Unlike… More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563 - 18 July 2024

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

  • Open Access

    ARTICLE

    YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments

    Rui Zhang1,2, Tonghai Liu1,2,*, Wenzheng Liu1,2, Chaungchuang Yuan1,2, Xiaoyue Seng1,2, Tiantian Guo1,2, Xue Wang1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1275-1296, 2024, DOI:10.32604/phyton.2024.052397 - 27 June 2024

    Abstract Rice diseases can adversely affect both the yield and quality of rice crops, leading to the increased use of pesticides and environmental pollution. Accurate detection of rice diseases in natural environments is crucial for both operational efficiency and quality assurance. Deep learning-based disease identification technologies have shown promise in automatically discerning disease types. However, effectively extracting early disease features in natural environments remains a challenging problem. To address this issue, this study proposes the YOLO-CRD method. This research selected images of common rice diseases, primarily bakanae disease, bacterial brown spot, leaf rice fever, and dry… More >

Displaying 1-10 on page 1 of 90. Per Page