Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting

    Zitong Zhao1, Zixuan Zhang2, Zhenxing Niu3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069752 - 10 November 2025

    Abstract Reliable traffic flow prediction is crucial for mitigating urban congestion. This paper proposes Attention-based spatiotemporal Interactive Dynamic Graph Convolutional Network (AIDGCN), a novel architecture integrating Interactive Dynamic Graph Convolution Network (IDGCN) with Temporal Multi-Head Trend-Aware Attention. Its core innovation lies in IDGCN, which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs, and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data. For 15- and 60-min forecasting on METR-LA, AIDGCN achieves MAEs of 0.75% and 0.39%, and RMSEs More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799 - 21 June 2023

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of… More >

  • Open Access

    ARTICLE

    MLP-PSO Framework with Dynamic Network Tuning for Traffic Flow Forecasting

    V. Rajalakshmi1,*, S. Ganesh Vaidyanathan2

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1335-1348, 2022, DOI:10.32604/iasc.2022.024310 - 24 March 2022

    Abstract Traffic flow forecasting is the need of the hour requirement in Intelligent Transportation Systems (ITS). Various Artificial Intelligence Frameworks and Machine Learning Models are incorporated in today’s ITS to enhance forecasting. Tuning the model parameters play a vital role in designing an efficient model to improve the reliability of forecasting. Hence, the primary objective of this research is to propose a novel hybrid framework to tune the parameters of Multilayer Perceptron (MLP) using the Swarm Intelligence technique called Particle Swarm Optimization (PSO). The proposed MLP-PSO framework is designed to adjust the weights and bias parameters… More >

Displaying 1-10 on page 1 of 5. Per Page