Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing

    Huixiang Xu*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2309-2335, 2024, DOI:10.32604/cmc.2024.046253 - 27 February 2024

    Abstract The Internet of Things (IoT) has revolutionized how we interact with and gather data from our surrounding environment. IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights. The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented data generation and connectivity. These IoT devices, equipped with many sensors and actuators, continuously produce vast volumes of data. However, the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges. However, transmitting… More >

  • Open Access

    ARTICLE

    MBB-IoT: Construction and Evaluation of IoT DDoS Traffic Dataset from a New Perspective

    Yi Qing1, Xiangyu Liu2, Yanhui Du2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2095-2119, 2023, DOI:10.32604/cmc.2023.039980 - 30 August 2023

    Abstract Distributed Denial of Service (DDoS) attacks have always been a major concern in the security field. With the release of malware source codes such as BASHLITE and Mirai, Internet of Things (IoT) devices have become the new source of DDoS attacks against many Internet applications. Although there are many datasets in the field of IoT intrusion detection, such as Bot-IoT, Constrained Application Protocol–Denial of Service (CoAP-DoS), and LATAM-DDoS-IoT (some of the names of DDoS datasets), which mainly focus on DDoS attacks, the datasets describing new IoT DDoS attack scenarios are extremely rare, and only N-BaIoT… More >

  • Open Access

    ARTICLE

    A Trailblazing Framework of Security Assessment for Traffic Data Management

    Abdulaziz Attaallah1, Khalil al-Sulbi2, Areej Alasiry3, Mehrez Marzougui3, Neha Yadav4, Syed Anas Ansar5,*, Pawan Kumar Chaurasia4, Alka Agrawal4

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1853-1875, 2023, DOI:10.32604/iasc.2023.039761 - 21 June 2023

    Abstract Connected and autonomous vehicles are seeing their dawn at this moment. They provide numerous benefits to vehicle owners, manufacturers, vehicle service providers, insurance companies, etc. These vehicles generate a large amount of data, which makes privacy and security a major challenge to their success. The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors. This could have a negative impact on how well-liked CAVs are with… More >

  • Open Access

    ARTICLE

    GraphCWGAN-GP: A Novel Data Augmenting Approach for Imbalanced Encrypted Traffic Classification

    Jiangtao Zhai1,*, Peng Lin1, Yongfu Cui1, Lilong Xu1, Ming Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 2069-2092, 2023, DOI:10.32604/cmes.2023.023764 - 06 February 2023

    Abstract Encrypted traffic classification has become a hot issue in network security research. The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance. Although the Generative Adversarial Network (GAN) method can generate new samples by learning the feature distribution of the original samples, it is confronted with the problems of unstable training and mode collapse. To this end, a novel data augmenting approach called GraphCWGAN-GP is proposed in this paper. The traffic data is first converted into grayscale images as the input for the proposed model. Then, the minority… More >

  • Open Access

    ARTICLE

    Optimized Generative Adversarial Networks for Adversarial Sample Generation

    Daniyal M. Alghazzawi1, Syed Hamid Hasan1,*, Surbhi Bhatia2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3877-3897, 2022, DOI:10.32604/cmc.2022.024613 - 29 March 2022

    Abstract Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times. Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic. We are using Deep Convolutional Generative Adversarial Networks (DCGAN) to trick the malware classifier to believe it is a normal entity. In this work, a new dataset is created to fool the Artificial Intelligence (AI) based malware detectors, and it consists of different types of attacks such as Denial of Service (DoS), scan 11, scan 44, botnet,… More >

Displaying 1-10 on page 1 of 5. Per Page