Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    The Machine Learning Ensemble for Analyzing Internet of Things Networks: Botnet Detection and Device Identification

    Seung-Ju Han, Seong-Su Yoon, Ieck-Chae Euom*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1495-1518, 2024, DOI:10.32604/cmes.2024.053457 - 27 September 2024

    Abstract The rapid proliferation of Internet of Things (IoT) technology has facilitated automation across various sectors. Nevertheless, this advancement has also resulted in a notable surge in cyberattacks, notably botnets. As a result, research on network analysis has become vital. Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods. In this paper, we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework. The results indicate that using the More >

  • Open Access

    ARTICLE

    CMAES-WFD: Adversarial Website Fingerprinting Defense Based on Covariance Matrix Adaptation Evolution Strategy

    Di Wang, Yuefei Zhu, Jinlong Fei*, Maohua Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2253-2276, 2024, DOI:10.32604/cmc.2024.049504 - 15 May 2024

    Abstract Website fingerprinting, also known as WF, is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination, even when using the Tor anonymity network. While advanced attacks based on deep neural network (DNN) can perform feature engineering and attain accuracy rates of over 98%, research has demonstrated that DNN is vulnerable to adversarial samples. As a result, many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success. However, these methods suffer from high bandwidth overhead or require access to the target… More >

  • Open Access

    REVIEW

    Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances, Challenges and Future Directions

    Gulshan Kumar1,*, Hamed Alqahtani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 89-119, 2023, DOI:10.32604/cmes.2022.020724 - 24 August 2022

    Abstract Software-Defined Networking (SDN) enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions. Recently Machine Learning (ML) techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems (IDSs) considering logically centralized control and global view of the network provided by SDN. Many IDSs have developed using advances in machine learning and deep learning. This study presents a comprehensive review of recent work of ML-based IDS in context to SDN. It presents a comprehensive study of the existing review papers in More >

  • Open Access

    ARTICLE

    VPN and Non-VPN Network Traffic Classification Using Time-Related Features

    Mustafa Al-Fayoumi1, Mohammad Al-Fawa’reh2, Shadi Nashwan3,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3091-3111, 2022, DOI:10.32604/cmc.2022.025103 - 29 March 2022

    Abstract The continual growth of the use of technological appliances during the COVID-19 pandemic has resulted in a massive volume of data flow on the Internet, as many employees have transitioned to working from home. Furthermore, with the increase in the adoption of encrypted data transmission by many people who tend to use a Virtual Private Network (VPN) or Tor Browser (dark web) to keep their data privacy and hidden, network traffic encryption is rapidly becoming a universal approach. This affects and complicates the quality of service (QoS), traffic monitoring, and network security provided by Internet… More >

  • Open Access

    ARTICLE

    User Behavior Traffic Analysis Using a Simplified Memory-Prediction Framework

    Rahmat Budiarto1,*, Ahmad A. Alqarni1, Mohammed Y. Alzahrani1, Muhammad Fermi Pasha2, Mohamed Fazil Mohamed Firdhous3, Deris Stiawan4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2679-2698, 2022, DOI:10.32604/cmc.2022.019847 - 27 September 2021

    Abstract As nearly half of the incidents in enterprise security have been triggered by insiders, it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software (malware) in real-time. Failing to do so may cause a serious loss of reputation as well as business. At the same time, modern network traffic has dynamic patterns, high complexity, and large volumes that make it more difficult to detect malware early. The ability to learn tasks sequentially is crucial to the development of artificial intelligence.… More >

  • Open Access

    ARTICLE

    IoT Wireless Intrusion Detection and Network Traffic Analysis

    Vasaki Ponnusamy1, Aun Yichiet1, NZ Jhanjhi2,*, Mamoona humayun3, Maram Fahhad Almufareh3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 865-879, 2022, DOI:10.32604/csse.2022.018801 - 24 September 2021

    Abstract Enhancement in wireless networks had given users the ability to use the Internet without a physical connection to the router. Almost every Internet of Things (IoT) devices such as smartphones, drones, and cameras use wireless technology (Infrared, Bluetooth, IrDA, IEEE 802.11, etc.) to establish multiple inter-device connections simultaneously. With the flexibility of the wireless network, one can set up numerous ad-hoc networks on-demand, connecting hundreds to thousands of users, increasing productivity and profitability significantly. However, the number of network attacks in wireless networks that exploit such flexibilities in setting and tearing down networks has become… More >

  • Open Access

    ARTICLE

    Intrusion Detection Method of Internet of Things Based on Multi GBDT Feature Dimensionality Reduction and Hierarchical Traffic Detection

    Taifeng Pan*

    Journal of Quantum Computing, Vol.3, No.4, pp. 161-171, 2021, DOI:10.32604/jqc.2021.025373 - 10 January 2022

    Abstract The rapid development of Internet of Things (IoT) technology has brought great convenience to people’s life. However, the security protection capability of IoT is weak and vulnerable. Therefore, more protection needs to be done for the security of IoT. The paper proposes an intrusion detection method for IoT based on multi GBDT feature reduction and hierarchical traffic detection model. Firstly, GBDT is used to filter the features of IoT traffic data sets BoT-IoT and UNSW-NB15 to reduce the traffic feature dimension. At the same time, in order to improve the reliability of feature filtering, this… More >

  • Open Access

    ARTICLE

    YATA: Yet Another Proposal for Traffic Analysis and Anomaly Detection

    Yu Wang1,2,*, Yan Cao2, Liancheng Zhang2, Hongtao Zhang3, Roxana Ohriniuc4, Guodong Wang5, Ruosi Cheng6

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1171-1187, 2019, DOI:10.32604/cmc.2019.05575

    Abstract Network traffic anomaly detection has gained considerable attention over the years in many areas of great importance. Traditional methods used for detecting anomalies produce quantitative results derived from multi-source information. This makes it difficult for administrators to comprehend and deal with the underlying situations. This study proposes another method to yet determine traffic anomaly (YATA), based on the cloud model. YATA adopts forward and backward cloud transformation algorithms to fuse the quantitative value of acquisitions into the qualitative concept of anomaly degree. This method achieves rapid and direct perspective of network traffic. Experimental results with More >

Displaying 1-10 on page 1 of 8. Per Page