Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (251)
  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071804 - 12 January 2026

    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025

    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

  • Open Access

    ARTICLE

    Model Construction for Complex and Heterogeneous Data of Urban Road Traffic Congestion

    Jianchun Wen1, Minghao Zhu1,*, Bo Gao2, Zhaojian Liu1, Xuehan Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069671 - 09 December 2025

    Abstract Urban traffic generates massive and diverse data, yet most systems remain fragmented. Current approaches to congestion management suffer from weak data consistency and poor scalability. This study addresses this gap by proposing the Urban Traffic Congestion Unified Metadata Model (UTC-UMM). The goal is to provide a standardized and extensible framework for describing, extracting, and storing multisource traffic data in smart cities. The model defines a two-tier specification that organizes nine core traffic resource classes. It employs an eXtensible Markup Language (XML) Schema that connects general elements with resource-specific elements. This design ensures both syntactic and… More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    Toward Efficient Traffic-Sign Detection via SlimNeck and Coordinate-Attention Fusion in YOLO-SMM

    Hui Chen1, Mohammed A. H. Ali1,*, Bushroa Abd Razak1, Zhenya Wang2, Yusoff Nukman1, Shikai Zhang1, Zhiwei Huang1, Ligang Yao3, Mohammad Alkhedher4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067286 - 09 December 2025

    Abstract Accurate and real-time traffic-sign detection is a cornerstone of Advanced Driver-Assistance Systems (ADAS) and autonomous vehicles. However, existing one-stage detectors miss distant signs, and two-stage pipelines are impractical for embedded deployment. To address this issue, we present YOLO-SMM, a lightweight two-stage framework. This framework is designed to augment the YOLOv8 baseline with three targeted modules. (1) SlimNeck replaces PAN/FPN with a CSP-OSA/GSConv fusion block, reducing parameters and FLOPs without compromising multi-scale detail. (2) The MCA model introduces row- and column-aware weights to selectively amplify small sign regions in cluttered scenes. (3) MPDIoU augments CIoU loss… More >

  • Open Access

    ARTICLE

    Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting

    Zitong Zhao1, Zixuan Zhang2, Zhenxing Niu3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069752 - 10 November 2025

    Abstract Reliable traffic flow prediction is crucial for mitigating urban congestion. This paper proposes Attention-based spatiotemporal Interactive Dynamic Graph Convolutional Network (AIDGCN), a novel architecture integrating Interactive Dynamic Graph Convolution Network (IDGCN) with Temporal Multi-Head Trend-Aware Attention. Its core innovation lies in IDGCN, which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs, and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data. For 15- and 60-min forecasting on METR-LA, AIDGCN achieves MAEs of 0.75% and 0.39%, and RMSEs More >

  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    YOLO-SDW: Traffic Sign Detection Algorithm Based on YOLOv8s Skip Connection and Dynamic Convolution

    Qing Guo1,2, Juwei Zhang1,2,3,*, Bingyi Ren1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069053 - 10 November 2025

    Abstract Traffic sign detection is an important part of autonomous driving, and its recognition accuracy and speed are directly related to road traffic safety. Although convolutional neural networks (CNNs) have made certain breakthroughs in this field, in the face of complex scenes, such as image blur and target occlusion, the traffic sign detection continues to exhibit limited accuracy, accompanied by false positives and missed detections. To address the above problems, a traffic sign detection algorithm, You Only Look Once-based Skip Dynamic Way (YOLO-SDW) based on You Only Look Once version 8 small (YOLOv8s), is proposed. Firstly,… More >

Displaying 1-10 on page 1 of 251. Per Page