Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    REVIEW

    A Survey of Lung Nodules Detection and Classification from CT Scan Images

    Salman Ahmed1, Fazli Subhan2,3, Mazliham Mohd Su’ud3,*, Muhammad Mansoor Alam3,4, Adil Waheed5

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1483-1511, 2024, DOI:10.32604/csse.2024.053997 - 22 November 2024

    Abstract In the contemporary era, the death rate is increasing due to lung cancer. However, technology is continuously enhancing the quality of well-being. To improve the survival rate, radiologists rely on Computed Tomography (CT) scans for early detection and diagnosis of lung nodules. This paper presented a detailed, systematic review of several identification and categorization techniques for lung nodules. The analysis of the report explored the challenges, advancements, and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning (DL) algorithm. The findings also highlighted the usefulness of DL… More >

  • Open Access

    PROCEEDINGS

    Characterization on Fracture Toughness of Cermet Coating Coupling Instrumented Indentation and X-Ray Computed Tomography

    Ruizhe Huang1, Zhaoliang Qu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011440

    Abstract The surface brittle fracture of cermet coating seriously restricts its application. Accurate evaluation of the fracture toughness of cermet coating is a prerequisite for improving its life. This paper aims to propose an accurate characterization method for fracture toughness of cermet coating. By coupling instrumented indentation and X‑ ray computed tomography, the indentation-induced fracture behaviors under various loads within WC-12%Co coatings were studied. The indentation response was correlated with the damage evolution directly observed within the coating. The impact of substrate effects on indentation-induced fracture behaviors was further studied using finite element analysis (FEA). The… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    Positron Emission Tomography Lung Image Respiratory Motion Correcting with Equivariant Transformer

    Jianfeng He1,2, Haowei Ye1, Jie Ning1, Hui Zhou1,2,*, Bo She3,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3355-3372, 2024, DOI:10.32604/cmc.2024.048706 - 15 May 2024

    Abstract In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our study introduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learning-based framework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques, which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency and overemphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective feature extraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Lie group domains to highlight fundamental motion patterns, coupled with employing competitive weighting for More >

  • Open Access

    ARTICLE

    Material-SAM: Adapting SAM for Material XCT

    Xuelong Wu1, Junsheng Wang1,*, Zhongyao Li1, Yisheng Miao1, Chengpeng Xue1, Yuling Lang2, Decai Kong2, Xiaoying Ma2, Haibao Qiao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3703-3720, 2024, DOI:10.32604/cmc.2024.047027 - 26 March 2024

    Abstract X-ray Computed Tomography (XCT) enables non-destructive acquisition of the internal structure of materials, and image segmentation plays a crucial role in analyzing material XCT images. This paper proposes an image segmentation method based on the Segment Anything model (SAM). We constructed a dataset of carbide in nickel-based single crystal superalloys XCT images and preprocessed the images using median filtering, histogram equalization, and gamma correction. Subsequently, SAM was fine-tuned to adapt to the task of material XCT image segmentation, resulting in Material-SAM. We compared the performance of threshold segmentation, SAM, U-Net model, and Material-SAM. Our method More >

  • Open Access

    ARTICLE

    Multilevel Attention Unet Segmentation Algorithm for Lung Cancer Based on CT Images

    Huan Wang1, Shi Qiu1,2,*, Benyue Zhang1, Lixuan Xiao3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1569-1589, 2024, DOI:10.32604/cmc.2023.046821 - 27 February 2024

    Abstract Lung cancer is a malady of the lungs that gravely jeopardizes human health. Therefore, early detection and treatment are paramount for the preservation of human life. Lung computed tomography (CT) image sequences can explicitly delineate the pathological condition of the lungs. To meet the imperative for accurate diagnosis by physicians, expeditious segmentation of the region harboring lung cancer is of utmost significance. We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner, erect an interpretable model, and attain segmentation of lung cancer. The specific advancements… More >

  • Open Access

    REVIEW

    Congenital Absence of Pericardium: The Largest Systematic Review in the Field on 247 Worldwide Cases (1977-Now)

    Pier Paolo Bassareo1,2,3,*, Aurelio Secinaro4, Paolo Ciliberti5, Massimo Chessa6,7, Marco Alfonso Perrone5,8, Kevin Patrick Walsh1,2,3, Colin Joseph Mcmahon2,3

    Congenital Heart Disease, Vol.18, No.6, pp. 595-610, 2023, DOI:10.32604/chd.2023.046229 - 19 January 2024

    Abstract Background: Congenital absence of pericardium (CAP), also known as pericardial agenesis, represents an uncommon cardiac abnormality and mostly incidental finding. It can be subdivided into complete and partial (left or right-sided) forms. Because of its infrequency, just case reports and a few case series have been released so far. This paper represents the largest systematic review in the field. Nine features (age at diagnosis, type, gender, clinical presentation, electrocardiography, imaging (ultrasounds, CT/MRI), concomitant cardiac defects, and outcome) were analysed. Methods: The electronic database PubMed was investigated from its establishment up to July 15th, 2023. Just case… More >

  • Open Access

    ARTICLE

    A Double-Branch Xception Architecture for Acute Hemorrhage Detection and Subtype Classification

    Muhammad Naeem Akram1, Muhammad Usman Yaseen1, Muhammad Waqar1, Muhammad Imran1,*, Aftab Hussain2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3727-3744, 2023, DOI:10.32604/cmc.2023.041855 - 08 October 2023

    Abstract This study presents a deep learning model for efficient intracranial hemorrhage (ICH) detection and subtype classification on non-contrast head computed tomography (CT) images. ICH refers to bleeding in the skull, leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis. It is classified as intra-axial hemorrhage (intraventricular, intraparenchymal) and extra-axial hemorrhage (subdural, epidural, subarachnoid) based on the bleeding location inside the skull. Many computer-aided diagnoses (CAD)-based schemes have been proposed for ICH detection and classification at both slice and scan levels. However, these approaches perform only binary classification and suffer from a… More >

  • Open Access

    ARTICLE

    Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

    Liwei Deng1, Yuanzhi Zhang1, Xin Yang2,*, Sijuan Huang2, Jing Wang3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2671-2684, 2023, DOI:10.32604/cmc.2023.036642 - 31 March 2023

    Abstract High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Based Image Reconstruction for Computed Tomography: A Survey

    Quan Yan1, Yunfan Ye1, Jing Xia1, Zhiping Cai1,*, Zhilin Wang2, Qiang Ni3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2545-2558, 2023, DOI:10.32604/iasc.2023.029857 - 15 March 2023

    Abstract Computed tomography has made significant advances since its introduction in the early 1970s, where researchers have mainly focused on the quality of image reconstruction in the early stage. However, radiation exposure poses a health risk, prompting the demand of the lowest possible dose when carrying out CT examinations. To acquire high-quality reconstruction images with low dose radiation, CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction, to reconstruction methods based on artificial intelligence (AI). All these efforts are devoted to constructing high-quality images using only low doses with fast reconstruction More >

Displaying 1-10 on page 1 of 88. Per Page