Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Hybrid Forecasting Techniques for Renewable Energy Integration in Electricity Markets Using Fractional and Fractal Approach

    Tariq Ali1,2,*, Muhammad Ayaz1,2, Mohammad Hijji2, Imran Baig3, MI Mohamed Ershath4, Saleh Albelwi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3839-3858, 2025, DOI:10.32604/cmes.2025.073169 - 23 December 2025

    Abstract The integration of renewable energy sources into electricity markets presents significant challenges due to the inherent variability and uncertainty of power generation from wind, solar, and other renewables. Accurate forecasting is crucial for ensuring grid stability, optimizing market operations, and minimizing economic risks. This paper introduces a hybrid forecasting framework incorporating fractional-order statistical models, fractal-based feature engineering, and deep learning architectures to improve renewable energy forecasting accuracy. Fractional autoregressive integrated moving average (FARIMA) and fractional exponential smoothing (FETS) models are explored for capturing long-memory dependencies in energy time-series data. Additionally, multifractal detrended fluctuation analysis (MFDFA) More >

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Bidirectional LSTM-Based Energy Consumption Forecasting: Advancing AI-Driven Cloud Integration for Cognitive City Energy Management

    Sheik Mohideen Shah1, Meganathan Selvamani1, Mahesh Thyluru Ramakrishna2,*, Surbhi Bhatia Khan3,4,5, Shakila Basheer6, Wajdan Al Malwi7, Mohammad Tabrez Quasim8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2907-2926, 2025, DOI:10.32604/cmc.2025.063809 - 16 April 2025

    Abstract Efficient energy management is a cornerstone of advancing cognitive cities, where AI, IoT, and cloud computing seamlessly integrate to meet escalating global energy demands. Within this context, the ability to forecast electricity consumption with precision is vital, particularly in residential settings where usage patterns are highly variable and complex. This study presents an innovative approach to energy consumption forecasting using a bidirectional Long Short-Term Memory (LSTM) network. Leveraging a dataset containing over two million multivariate, time-series observations collected from a single household over nearly four years, our model addresses the limitations of traditional time-series forecasting… More >

  • Open Access

    ARTICLE

    MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting

    Ruoxin Li1,*, Shaoxiong Wu1, Fengping Deng1, Zhongli Tian1, Hua Cai1, Xiang Li1, Xu Xu1, Qi Liu2,3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2969-2984, 2025, DOI:10.32604/cmc.2025.060230 - 17 February 2025

    Abstract Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and… More >

  • Open Access

    ARTICLE

    Uncertainty Analysis on Electric Power Consumption

    Oakyoung Han1, Jaehyoun Kim2,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2621-2632, 2021, DOI:10.32604/cmc.2021.014665 - 13 April 2021

    Abstract The analysis of large time-series datasets has profoundly enhanced our ability to make accurate predictions in many fields. However, unpredictable phenomena, such as extreme weather events or the novel coronavirus 2019 (COVID-19) outbreak, can greatly limit the ability of time-series analyses to establish reliable patterns. The present work addresses this issue by applying uncertainty analysis using a probability distribution function, and applies the proposed scheme within a preliminary study involving the prediction of power consumption for a single hotel in Seoul, South Korea based on an analysis of 53,567 data items collected by the Korea… More >

Displaying 1-10 on page 1 of 5. Per Page