Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    REVIEW

    A Survey of Deep Learning for Time Series Forecasting: Theories, Datasets, and State-of-the-Art Techniques

    Gaoyong Lu1, Yang Ou1, Zhihong Wang2, Yingnan Qu2, Yingsheng Xia2, Dibin Tang2, Igor Kotenko3, Wei Li2,4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2403-2441, 2025, DOI:10.32604/cmc.2025.068024 - 23 September 2025

    Abstract Deep learning (DL) has revolutionized time series forecasting (TSF), surpassing traditional statistical methods (e.g., ARIMA) and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data. This comprehensive survey reviews state-of-the-art DL architectures for TSF, focusing on four core paradigms: (1) Convolutional Neural Networks (CNNs), adept at extracting localized temporal features; (2) Recurrent Neural Networks (RNNs) and their advanced variants (LSTM, GRU), designed for sequential dependency modeling; (3) Graph Neural Networks (GNNs), specialized for forecasting structured relational data with spatial-temporal dependencies; and (4) Transformer-based models, leveraging self-attention mechanisms to… More >

  • Open Access

    ARTICLE

    Using Time Series Foundation Models for Few-Shot Remaining Useful Life Prediction of Aircraft Engines

    Ricardo Dintén*, Marta Zorrilla

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 239-265, 2025, DOI:10.32604/cmes.2025.065461 - 31 July 2025

    Abstract Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate… More >

  • Open Access

    ARTICLE

    Analyzing Human Trafficking Networks Using Graph-Based Visualization and ARIMA Time Series Forecasting

    Naif Alsharabi1,*, Akashdeep Bhardwaj2,*

    Journal of Cyber Security, Vol.7, pp. 135-163, 2025, DOI:10.32604/jcs.2025.064019 - 18 June 2025

    Abstract In a world driven by unwavering moral principles rooted in ethics, the widespread exploitation of human beings stands universally condemned as abhorrent and intolerable. Traditional methods employed to identify, prevent, and seek justice for human trafficking have demonstrated limited effectiveness, leaving us confronted with harrowing instances of innocent children robbed of their childhood, women enduring unspeakable humiliation and sexual exploitation, and men trapped in servitude by unscrupulous oppressors on foreign shores. This paper focuses on human trafficking and introduces intelligent technologies including graph database solutions for deciphering unstructured relationships and entity nodes, enabling the comprehensive More >

  • Open Access

    ARTICLE

    FractalNet-LSTM Model for Time Series Forecasting

    Nataliya Shakhovska, Volodymyr Shymanskyi*, Maksym Prymachenko

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4469-4484, 2025, DOI:10.32604/cmc.2025.062675 - 06 March 2025

    Abstract Time series forecasting is important in the fields of finance, energy, and meteorology, but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data. In this paper, we propose the FractalNet-LSTM model, which combines fractal convolutional units with recurrent long short-term memory (LSTM) layers to model time series efficiently. To test the effectiveness of the model, data with complex structures and patterns, in particular, with seasonal and cyclical effects, were used. To better demonstrate the obtained results and the formed conclusions, the model performance was shown on the datasets More >

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

  • Open Access

    ARTICLE

    DecMamba: Mamba Utilizing Series Decomposition for Multivariate Time Series Forecasting

    Jianxin Feng*, Jianhao Zhang, Ge Cao, Zhiguo Liu, Yuanming Ding

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1049-1068, 2025, DOI:10.32604/cmc.2024.058374 - 03 January 2025

    Abstract Multivariate time series forecasting is widely used in traffic planning, weather forecasting, and energy consumption. Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series. However, the decomposition kernel of previous decomposition-based models is fixed, and these models have not considered the differences in frequency fluctuations between components. These problems make it difficult to analyze the intricate temporal variations of real-world time series. In this paper, we propose a series decomposition-based Mamba model, DecMamba, to obtain the intricate temporal dependencies and… More >

  • Open Access

    ARTICLE

    TSCND: Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting

    Haoran Huang, Weiting Chen*, Zheming Fan

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3665-3681, 2024, DOI:10.32604/cmc.2024.048008 - 26 March 2024

    Abstract Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    A Measurement Study of the Ethereum Underlying P2P Network

    Mohammad Z. Masoud1, Yousef Jaradat1, Ahmad Manasrah2, Mohammad Alia3, Khaled Suwais4,*, Sally Almanasra4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 515-532, 2024, DOI:10.32604/cmc.2023.044504 - 30 January 2024

    Abstract This work carried out a measurement study of the Ethereum Peer-to-Peer (P2P) network to gain a better understanding of the underlying nodes. Ethereum was applied because it pioneered distributed applications, smart contracts, and Web3. Moreover, its application layer language “Solidity” is widely used in smart contracts across different public and private blockchains. To this end, we wrote a new Ethereum client based on Geth to collect Ethereum node information. Moreover, various web scrapers have been written to collect nodes’ historical data from the Internet Archive and the Wayback Machine project. The collected data has been… More >

  • Open Access

    ARTICLE

    Statistical Time Series Forecasting Models for Pandemic Prediction

    Ahmed ElShafee1, Walid El-Shafai2,3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Moustafa H. Aly5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 349-374, 2023, DOI:10.32604/csse.2023.037408 - 26 May 2023

    Abstract COVID-19 has significantly impacted the growth prediction of a pandemic, and it is critical in determining how to battle and track the disease progression. In this case, COVID-19 data is a time-series dataset that can be projected using different methodologies. Thus, this work aims to gauge the spread of the outbreak severity over time. Furthermore, data analytics and Machine Learning (ML) techniques are employed to gain a broader understanding of virus infections. We have simulated, adjusted, and fitted several statistical time-series forecasting models, linear ML models, and nonlinear ML models. Examples of these models are… More >

Displaying 1-10 on page 1 of 21. Per Page