Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    Price Prediction of Seasonal Items Using Time Series Analysis

    Ahmed Salah1,2, Mahmoud Bekhit3, Esraa Eldesouky4,5, Ahmed Ali4,6,*, Ahmed Fathalla7

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 445-460, 2023, DOI:10.32604/csse.2023.035254 - 20 January 2023

    Abstract The price prediction task is a well-studied problem due to its impact on the business domain. There are several research studies that have been conducted to predict the future price of items by capturing the patterns of price change, but there is very limited work to study the price prediction of seasonal goods (e.g., Christmas gifts). Seasonal items’ prices have different patterns than normal items; this can be linked to the offers and discounted prices of seasonal items. This lack of research studies motivates the current work to investigate the problem of seasonal items’ prices… More >

  • Open Access

    ARTICLE

    Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5

    Narendran Sobanapuram Muruganandam, Umamakeswari Arumugam*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 979-989, 2023, DOI:10.32604/csse.2023.024943 - 15 June 2022

    Abstract In forecasting real time environmental factors, large data is needed to analyse the pattern behind the data values. Air pollution is a major threat towards developing countries and it is proliferating every year. Many methods in time series prediction and deep learning models to estimate the severity of air pollution. Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality. This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter (PM) PM2.5. To perform experimental analysis the… More >

  • Open Access

    ARTICLE

    Outlier Detection and Forecasting for Bridge Health Monitoring Based on Time Series Intervention Analysis

    Bing Qu*, Ping Liao, Yaolong Huang

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 323-341, 2022, DOI:10.32604/sdhm.2022.021446 - 03 January 2023

    Abstract The method of time series analysis, applied by establishing appropriate mathematical models for bridge health monitoring data and making forecasts of structural future behavior, stands out as a novel and viable research direction for bridge state assessment. However, outliers inevitably exist in the monitoring data due to various interventions, which reduce the precision of model fitting and affect the forecasting results. Therefore, the identification of outliers is crucial for the accurate interpretation of the monitoring data. In this study, a time series model combined with outlier information for bridge health monitoring is established using intervention… More >

  • Open Access

    ARTICLE

    Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction

    Mashael Khayyat1,*, Kaouther Laabidi2, Nada Almalki1, Maysoon Al-zahrani1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3781-3793, 2021, DOI:10.32604/cmc.2021.014918 - 01 March 2021

    Abstract COVID-19 comes from a large family of viruses identified in 1965; to date, seven groups have been recorded which have been found to affect humans. In the healthcare industry, there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict confirmed cases, recovered cases, and deaths. Many researchers and scientists in the field of machine learning are also involved in solving this dilemma, seeking to understand the patterns and characteristics of virus attacks, so scientists may make the right decisions and take specific actions. Furthermore,… More >

  • Open Access

    ARTICLE

    Nonlinear Time Series Analysis of Pathogenesis of COVID-19 Pandemic Spread in Saudi Arabia

    Sunil Kumar Sharma1, Shivam Bhardwaj2,*, Rashmi Bhardwaj3, Majed Alowaidi1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 805-825, 2021, DOI:10.32604/cmc.2020.011937 - 30 October 2020

    Abstract This article discusses short–term forecasting of the novel Corona Virus (COVID-19) data for infected and recovered cases using the ARIMA method for Saudi Arabia. The COVID-19 data was obtained from the Worldometer and MOH (Ministry of Health, Saudi Arabia). The data was analyzed for the period from March 2, 2020 (the first case reported) to June 15, 2020. Using ARIMA (2, 1, 0), we obtained the short forecast up to July 02, 2020. Several statistical parameters were tested for the goodness of fit to evaluate the forecasting methods. The results show that ARIMA (2, 1, More >

  • Open Access

    ARTICLE

    Time Series Analysis for Vibration-Based Structural Health Monitoring: A Review

    Kong Fah Tee 1,*

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 129-147, 2018, DOI:10.3970/sdhm.2018.04316

    Abstract Structural health monitoring (SHM) is a vast, interdisciplinary research field whose literature spans several decades with focusing on condition assessment of different types of structures including aerospace, mechanical and civil structures. The need for quantitative global damage detection methods that can be applied to complex structures has led to vibration-based inspection. Statistical time series methods for SHM form an important and rapidly evolving category within the broader vibration-based methods. In the literature on the structural damage detection, many time series-based methods have been proposed. When a considered time series model approximates the vibration response of… More >

Displaying 1-10 on page 1 of 8. Per Page