Narathip Chaobankoh1, Tallit Jumphoo1, Monthippa Uthansakul1, Khomdet Phapatanaburi2, Bura Sindthupakorn3, Supakit Rooppakhun4, Peerapong Uthansakul1,*
CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1269-1282, 2022, DOI:10.32604/cmc.2022.027474
- 18 May 2022
Abstract Recently, the Muscle-Computer Interface (MCI) has been extensively popular for employing Electromyography (EMG) signals to help the development of various assistive devices. However, few studies have focused on ankle foot movement classification considering EMG signals at limb position. This work proposes a new framework considering two EMG signals at a lower-limb position to classify the ankle movement characteristics based on normal walking cycles. For this purpose, we introduce a human ankle-foot movement classification method using a two-dimensional-convolutional neural network (2D-CNN) with low-cost EMG sensors based on lower-limb motion. The time-domain signals of EMG obtained from… More >