Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators

    Daisuke Ishihara1,*, Prakasha Chigahalli Ramegowda2, Shoichi Aikawa1, Naoki Iwamaru1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1187-1206, 2023, DOI:10.32604/cmes.2023.024614 - 06 February 2023

    Abstract This paper demonstrates the importance of three-dimensional (3-D) piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator. It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects (i.e., piezoelectric coupling effect). In addition, there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end (i.e., 3-D effect). Hence, modeling of these More >

  • Open Access

    ARTICLE

    Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    R.A. Regueiro1,2, B. Zhang2, S.L. Wozniak3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.1, pp. 1-39, 2014, DOI:10.3970/cmes.2014.098.001 - 16 August 2021

    Abstract The paper presents three-dimensional, large deformation, coupled finite element analysis (FEA) of dynamic loading on soft biological tissues treated as biphasic (solid-fluid) porous media. An overview is presented of the biphasic solidfluid mixture theory at finite strain, including inertia terms. The solid skeleton is modeled as an isotropic, compressible, hyperelastic material. FEA simulations include: (1) compressive uniaxial strain loading on a column of lung parenchyma with either pore air or water fluid, (2) out-of-plane pressure loading on a thin slab of lung parenchyma with either pore air or water fluid, and (3) pressure loading on More >

  • Open Access

    ARTICLE

    A Study of Frictional Property of the Human Fingertip Using Three-Dimensional Finite Element Analysis

    Hiroaki Yoshida, Mitsunori Tada, Masaaki Mochimaru

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 61-72, 2011, DOI:10.3970/mcb.2011.008.061

    Abstract Since the tactile perception detects skin deformation due to the contact of an object, it is important to understand contact mechanics, especially, frictional behavior of the human fingertip. The coefficient of friction is recently modeled as a function of the applied normal load in which case the traditional Coulomb's law does not provide a description for the skin surface. When a surface is a rubber-like material, the frictional behavior follows the frictional law of the rubber-like material. Therefore, we developed a three-dimensional Finite Element model of the fingertip and analyzed frictional behavior based on the… More >

Displaying 1-10 on page 1 of 3. Per Page