Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    PROCEEDINGS

    The Staggered Design of Multi-Diaphragm in Thin-Walled Structures for Improving Compressive Performance

    Qianbing Tan1,*, Jin Wang1, Yisen Liu1, Guangyu Sun1, Huijing Gao1, Yong Peng1, Song Yao1, Kui Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011212

    Abstract Bio-inspired thin-walled structures have attracted widespread attention in the engineering field due to their excellent energy absorption capacity. In this work, it was observed that the stem of the bird-of-paradise plant consisted of longitudinal thin walls and transverse diaphragms. The diaphragms inside of the stems are parallel to each other within a column and exhibit staggered arrangements in the adjacent columns. Inspired by the stem of the bird-of-paradise plant, the staggered diaphragm design was introduced to improve the compressive properties of structures. Considering the staggered arrangement method and the Centro symmetry method, three types of… More >

  • Open Access

    ARTICLE

    Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite: Multiscale Design and Experimental Verification

    Xiaoyu Zhang1,2, Huizhong Zeng2, Shaohui Zhang2, Yan Zhang3,*, Mi Xiao4, Liping Liu2, Hao Zhou2,*, Hongyou Chai2, Liang Gao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 201-220, 2024, DOI:10.32604/cmes.2023.029389 - 22 September 2023

    Abstract Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting from the sandwich effect. Such structures can be fabricated by metallic additive manufacturing technique, such as selective laser melting (SLM). However, the maximum dimensions of actual structures are usually in a sub-meter scale, which results in restrictions on their appliance in aerospace and other fields. In this work, a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness More >

  • Open Access

    ARTICLE

    Boundary Element Analysis for Mode III Crack Problems of Thin-Walled Structures from Micro- to Nano-Scales

    Bingrui Ju1, Wenzhen Qu1,2,*, Yan Gu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2677-2690, 2023, DOI:10.32604/cmes.2023.025886 - 09 March 2023

    Abstract This paper develops a new numerical framework for mode III crack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature. The details of special crack-tip elements for displacement and stress are derived. An exponential transformation technique is introduced to accurately calculate the nearly singular integral, which is the key task of the boundary element simulation of thin-walled structures. Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework. Numerical results demonstrate that the present scheme is valid for mode III crack More >

  • Open Access

    ARTICLE

    Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures

    Shaoqiang Xu1, Weiwei Li1,*, Lin Li2, Tao Li1, Chicheng Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 929-947, 2022, DOI:10.32604/cmes.2022.018964 - 14 March 2022

    Abstract Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes More >

  • Open Access

    ABSTRACT

    Vibration of composite folded-plate structures using finite strips

    J. Kong1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 57-64, 2009, DOI:10.3970/icces.2009.010.057

    Abstract For the analysis of prismatic thin-walled structures, whether single or continuous spanned, the finite strip method is one of the most effective methods developed to date. Significant development of the method has been made, in particular, by adopting various analytical functions in the longitudinal direction to suit various support conditions, including the classical beam vibration functions and the spline functions. In contrast to analytically-defined functions, an alternative finite strip method is presented herein by exploring the use of computed beam vibration functions that takes into consideration explicitly the axial-bending coupling effect of unsymmetrical, cross-ply laminates More >

Displaying 1-10 on page 1 of 6. Per Page