Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    REVIEW

    Recent Efforts on the Compressive and Tensile Strength Behavior of Thermoplastic-Based Recycled Aggregate Concrete toward Sustainability in Construction Materials

    Mahmoud Alhashash1, Abdullah Alariyan2, Ameen Mokhles Youns3, Favzi Ghreivati4, Ahed Habib5,*, Maan Habib6

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070194 - 08 January 2026

    Abstract Concrete production often relies on natural aggregates, which can lead to resource depletion and environmental harm. In addition, improper disposal of thermoplastic waste exacerbates ecological problems. Although significant attention has recently been given to recycling various waste materials into concrete, studies specifically addressing thermoplastic recycled aggregates are still trending. This underscores the need to comprehensively review existing literature, identify research trends, and recognize gaps in understanding the mechanical performance of thermoplastic-based recycled aggregate concrete. Accordingly, this review summarizes recent investigations focused on the mechanical properties of thermoplastic-based recycled aggregate concrete, emphasizing aspects such as compressive… More >

  • Open Access

    PROCEEDINGS

    A New Analytical Method for Strength Prediction of Injection Molded Fiber Reinforced Thermoplastics Based on Progressive Delamination Failure Principle

    Dayong Huang1,2,*, Wenjun Wang1,2, Xiaofu Tang1,2, Pengfei Zhu3, Xianqiong Zhao3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012063

    Abstract Accurate prediction for the tensile properties (tensile modulus and strength) of injection molded fiber-reinforced thermoplastics (IMFT) plays an important role in the design of structures made with such composites. Based on the Laminate analogy approach (LAA), a unified distribution function (UDF) of tensile properties is derived by introducing the assumption that the fiber length distribution (FLD) and fiber orientation distribution (FOD) are independent of each other. The UDF of tensile properties is simplified by introducing the modified monotonic functions of fiber length and orientation factors (λL and λO). Compared with the tensile modulus and strength… More >

  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Body Temperature Programmable Shape Memory Thermoplastic Rubber

    Taoxi Wang1, Zhuo Liu1,2, Fu Jian1, Xing Shen1, Chen Wang1, Huwei Bian3, Tao Jiang3,*, Wei Min Huang4

    Journal of Polymer Materials, Vol.42, No.1, pp. 81-94, 2025, DOI:10.32604/jpm.2025.061047 - 27 March 2025

    Abstract This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications. We hybridized commercially available thermoplastic rubber (TPR) used in the footwear industry with un-crosslinked polycaprolactone (PCL) to create two samples, namely TP6040 and TP7030. The shape memory behavior, elasticity, and thermo-mechanical response of these rubbers were systematically investigated. The experimental results demonstrated outstanding shape memory performance, with both samples achieving shape fixity ratios (Rf) and shape recovery ratios (Rr) exceeding 94%. TP6040 exhibited a fitting time of 80 s at body temperature (37°C), More >

  • Open Access

    ARTICLE

    Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory

    Nayara Koba de Moura Morgado, Guilherme Ferreira de Melo Morgado, Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador*

    Journal of Polymer Materials, Vol.42, No.1, pp. 95-110, 2025, DOI:10.32604/jpm.2025.059364 - 27 March 2025

    Abstract The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications. Medical sutures, essential for securing implants and closing deep wounds, have evolved to incorporate smart materials capable of responding to various stimuli. This study explores the potential of thermoresponsive sutures, made from shape memory materials, that contract upon heating to bring loose stitches closer together, promoting optimal wound closure. We developed nanocomposites based on a blend of poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes (CNT) and graphene nanoplatelets (GN)… More >

  • Open Access

    ARTICLE

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

    Prabu Satria Sejati1,2, Adrien Magne1, Luke Froment1, Jennifer Afrim1, Alexandre Maenhaut3, Julie Maillet3, Firmin Obounou Akong1,*, Frédéric Fradet3, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.13, No.3, pp. 539-552, 2025, DOI:10.32604/jrm.2024.056813 - 20 March 2025

    Abstract Bio-based thermoplastic film from flax fiber and fatty acid (FA) was obtained using trifluoroacetic anhydride (TFAA) as an impelling agent. Different quantities of TFAA/FA, size of flax fiber, and fatty acids were applied to investigate chemical structure in relation to the mechanical properties. Decreasing the quantity of TFAA/FA by almost half from 1:4 to 1:2.5 (flax to TFAA/FA) only reduces by 22% the weight percent gain (WPG) and ester content and reducing flax fiber size slightly increases the WPG and ester content. All the treatments showed significant chemical structure modification, observed by FTIR and… More > Graphic Abstract

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

  • Open Access

    ARTICLE

    Multifunctional Films Based on Wheat Gluten and Microencapsulated Thyme Essential Oil

    Norma E. Marcovich1, Matías Federico Hernández1,2, María Roberta Ansorena2,*

    Journal of Renewable Materials, Vol.12, No.12, pp. 2049-2068, 2024, DOI:10.32604/jrm.2024.055151 - 20 December 2024

    Abstract In this work, active and edible films for food packaging were obtained by intensive mixing and compression molding of the wheat gluten (WG) glycerol-plasticized paste. Thyme essential oil (TEO, 10 and 15 wt.%) was incorporated as the active component microencapsulated in β-cyclodextrins (β-CD) and included directly into the biopolymer matrix for comparison. It was found that films incorporating microencapsulated TEO are more soluble in water (total soluble matter (dry method) of about 33% and 36.6% vs. 22.4% and 18.6%, for films containing 10% and 15% TEO, respectively) but less rigid than those obtained with free oil… More > Graphic Abstract

    Multifunctional Films Based on Wheat Gluten and Microencapsulated Thyme Essential Oil

  • Open Access

    PROCEEDINGS

    Tunable Energy Absorption of Thermoplastic Polyurethane P-type TPMS Lattice Structure via Trimming

    Haoming Mo1,*, Junhao Ding1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011375

    Abstract Triply periodic minimal surface (TPMS) shell-lattices are attracting increasing attention because of their exceptional mechanical and geometric characteristics. Additive manufactured TPMS structures using thermoplastic polyurethane (TPU) have great application potential in energy absorptions, for which the mechanical properties can be conveniently adjusted to meet diverse requirements. Nevertheless, there is a need for further improvement in the stability and adjustability of energy absorption capacity. This is due to the significant impact of the buckling effect and induced stress fluctuations when the structure is subjected to compression. To alleviate the buckling effect and tune the capability of… More >

  • Open Access

    REVIEW

    Overview of Jute Fibre as Thermoplastic Matrix Polymer Reinforcement

    Tezara Cionita1,*, Mohammad Hazim Mohamad Hamdan2, Januar Parlaungan Siregar3,4,*, Deni Fajar Fitriyana5, Ramli Junid6, Wong Ling Shing7, Jamiluddin Jaafar8, Agustinus Purna Irawan9, Teuku Rihayat10, Rifky Ismail11, Athanasius Priharyoto Bayuseno11, Emilianus Jehadus12

    Journal of Renewable Materials, Vol.12, No.3, pp. 457-483, 2024, DOI:10.32604/jrm.2024.045814 - 11 April 2024

    Abstract Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals (SDGs). Due to their renewable resources and biodegradability, natural fiber-reinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution. Among the natural fibre, jute fibre obtained from a bast plant has an increasing trend in the application, especially as a reinforcement material. Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites. Nevertheless, current demands More >

  • Open Access

    ARTICLE

    The structure polymer/As-Se-S doped by Bi for X-ray imaging

    A. Chiritaa,*, A. Hustucb, N. Nasedchinaa, S. Vatavua

    Chalcogenide Letters, Vol.20, No.11, pp. 803-809, 2023, DOI:10.15251/CL.2023.2011.803

    Abstract The polymer/67at %(As2S3)0.985(Bi2Se3)0.015:33 at.% As2Se3 structure for X-ray imaging has been investigated. The possibility of registering relief-phase images for radiation of “white” spectrum of tungsten anode X-ray tube was shown. More >

Displaying 1-10 on page 1 of 33. Per Page