Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Concurrent Two–Scale Topology Optimization of Thermoelastic Structures Using a M–VCUT Level Set Based Model of Microstructures

    Jin Zhou, Minjie Shao*, Ye Tian, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1327-1345, 2024, DOI:10.32604/cmes.2024.054059

    Abstract By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT) level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method, and then More >

  • Open Access

    ARTICLE

    Thermoelastic Structural Topology Optimization Based on Moving Morphable Components Framework

    Jun Yan1,3, Qi Xu1, Zhirui Fan1, Zunyi Duan2,*, Hongze Du1, Dongling Geng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1179-1196, 2021, DOI:10.32604/cmes.2021.016950

    Abstract This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives of minimum structural compliance and elastic strain energy with a specified available volume constraint. To explicitly express the configuration evolution in the structural topology optimization under combination of mechanical and thermal load conditions, the moving morphable components (MMC) framework is adopted. Based on the characteristics of the MMC framework, the number of design variables can be reduced substantially. Corresponding optimization formulation in the MMC topology optimization framework and numerical solution procedures are developed for several numerical examples. Different optimization results are More >

Displaying 1-10 on page 1 of 2. Per Page