Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Numerical and Experimental Study of Thermal Storage Energy in a Building with Various Pipeline Design under Floor—Case Study

    Rafah H. Zaidan*, Najim A. Jasim

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025

    Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >

  • Open Access

    ARTICLE

    Two-Stage Optimal Dispatching of Electricity-Hydrogen-Waste Multi-Energy System with Phase Change Material Thermal Storage

    Linwei Yao1,*, Xiangning Lin1,2, Huashen He1, Jiahui Yang1

    Energy Engineering, Vol.122, No.8, pp. 3285-3308, 2025, DOI:10.32604/ee.2025.066628 - 24 July 2025

    Abstract In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant (WIPP) and renewable energy accommodation, an electricity-hydrogen-waste multi-energy system integrated with phase change material (PCM) thermal storage is proposed. First, a thermal energy management framework is constructed, combining PCM thermal storage with the alkaline electrolyzer (AE) waste heat recovery and the heat pump (HP), while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation. Next, a flue gas treatment method based on purification-separation-storage coordination is adopted, achieving spatiotemporal decoupling between waste incineration… More >

  • Open Access

    ARTICLE

    Performance Analysis of Solar Porous Media Collector Integrated with Thermal Energy Storage Charged by CuFe2O4/Water Nanofluids Coil Tubes

    Ahmad Mola1, Sahira H. Ibrahim1, Nagham Q. Shari2, Hasanain A. Abdul Wahhab3,*

    Energy Engineering, Vol.122, No.6, pp. 2239-2255, 2025, DOI:10.32604/ee.2025.061590 - 29 May 2025

    Abstract High-efficiency solar energy systems are characterized by their designs, which primarily rely on effective concentration and conversion methods of solar radiation. Evaluation of the performance enhancement of flat plate solar collectors by integration with thermal energy storage could be achieved through simulation of proposed designs. The work aims to analyze a new solar collector integrated with a porous medium and shell and coiled tube heat exchanger. The heat transfer enhancement was investigated by varying the geometrical parameters in shell and helically coiled tubes operating with CuFe2O4/water with different volume fractions of 0.02%, 0.05%, and 0.1 vol.%.… More >

  • Open Access

    ARTICLE

    Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage

    Matiewos Mekonen Abera1,2,*, Venkata Ramayya Ancha1, Balewgize Amare1, L. Syam Sundar3, Kotturu V. V. Chandra Mouli4, Sambasivam Sangaraju5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1043-1070, 2024, DOI:10.32604/fhmt.2024.049525 - 30 August 2024

    Abstract This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well. The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage. Parameters that control this optimization are storage height, storage diameter, heat transfer fluid flow rate, and sand bed particle size. The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method. Accordingly, the optimized parameters… More >

  • Open Access

    ARTICLE

    AN ULTIMATE SOLUTION TO PHASING OUT FOSSIL FUELS - PART I: UTILITY-SCALE UNDERGROUND HOT-WATER STORAGE (USUHWS) FOR POWER PRODUCTION AND HEAT SUPPLY

    Yiding Cao

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-12, 2022, DOI:10.5098/hmt.19.1

    Abstract This paper introduces utility-scale underground hot water storage (USUHWS) systems and evaluates their performance to enable renewable energy sources to produce dispatchable utility-scale power or supply heat with minimized interruption and impact by weather conditions. The USUHWS systems could retain the thermal energy content of the stored hot water for years so that renewable energy can be extracted and stored at any time year-round and be used whenever needed. Another major objective of this paper is to introduce hot-water power and heat internets to interconnect storage systems, power plants, energy sources, and various water and More >

  • Open Access

    ARTICLE

    Experimental Investigation on Prototype Latent Heat Thermal Battery Charging and Discharging Function Integrated with Solar Collector

    Farhood Sarrafzadeh Javadi1, Hendrik Simon Cornelis Metselaar1,2,*, Poo Balan Ganesan1

    Energy Engineering, Vol.119, No.4, pp. 1587-1610, 2022, DOI:10.32604/ee.2022.020304 - 23 May 2022

    Abstract This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery (LHTB) integrated with a solar collector as the main source of heat. The LHTB is a new solution in the field of thermal storage and developed based on the battery concept in terms of recharge ability, portability and usability as a standalone device. It is fabricated based on the thermal battery storage concept and consists of a plate-fin and tube heat exchanger located inside the battery casing and paraffin wax which is used as a latent heat storage material. Solar thermal… More >

  • Open Access

    ARTICLE

    PERFORMANCE EVALUATION OF A SOLAR WATER HEATER INTEGRATED WITH BUILT-IN THERMAL ENERGY STORAGE VIA POROUS MEDIA

    Hasan S. Majdia,*, Azher M. Abedb, Laith J. Habeebc

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-7, 2021, DOI:10.5098/hmt.17.6

    Abstract The present work presents and analyzes the results acquired from outdoor experimental measurements of a solar latent heat storage unit integrated with built-in thermal energy storage at the presence and absence of porous media. The tank consists of a porous media part, a packed of glass beds, and the fluid flowing through the void space surrounding the porous glass beds. The porous tanks were filled by 1.68 mm glass beds to form bed heights (h) of 10 and 20 cm. Results show that the maximum thermal storage of 110 min is achieved in hot flow More >

  • Open Access

    ARTICLE

    Research on Operation of Electrothermal Integrated Energy System Including Heat Pump and Thermal Storage Units Based on Capacity Planning

    Taihong Liu1, Dingchen Wu2,*, Fei Xu3, Panpan Song2, Mingshan Wei2, Jian Wu1, Xiaochun Bai1

    Energy Engineering, Vol.118, No.3, pp. 535-548, 2021, DOI:10.32604/EE.2021.014326 - 22 March 2021

    Abstract In view of the Three North areas existing wind power absorption and environment pollution problems, the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation. In this paper, an electrothermal integrated energy system including heat pump and thermal storage units was proposed. The scheduling model was based on the load data and the output characteristics of power units, each power unit capacity was programmed without constraints, and the proposed scheduling model was compared with the traditional combined heat and power scheduling model. Results showed that the More >

  • Open Access

    ARTICLE

    Enhanced Thermal Performance of Roofing Materials by Integrating Phase Change Materials to Reduce Energy Consumption in Buildings

    Chanita Mano, Atthakorn Thongtha*

    Journal of Renewable Materials, Vol.9, No.3, pp. 495-506, 2021, DOI:10.32604/jrm.2021.013201 - 14 January 2021

    Abstract This work focused on characterizing and improving the thermal behavior of metal sheet roofing. To decrease the heat transfer from the roof into a building, we investigated the efficiency of four types of phase change materials, with different melting points: PCM І, PCM II, PCM III and PCM IV, when used in conjunction with a sheet metal roof. The exterior metal roofing surface temperature was held constant at 50°C, 60°C, 70°C and 80°C, using a thermal source (halogen lights) for 360 min to investigate and compare the thermal performance of the metal sheet roofing with… More >

  • Open Access

    ABSTRACT

    Optimal Arrangement of Coil Heat Exchanger in Single Thermal Storage Tank with Molten Salt

    Suli Shi, Yu Qiang, Yuanwei Lu*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 158-158, 2019, DOI:10.32604/icces.2019.05362

    Abstract Low cost heat charge and discharge can be realized by the single storage thermal tank integrated with a coil heat exchanger and an annular baffle. Arrangements of the coil heat exchanger will directly affect the heat discharging performance of the system. Simulations were performed for six arrangements of the coil heat exchanger which are evaluated by outlet temperature, heat transfer rate and heat discharging efficiency. For different arrangements, the law of heat discharging performance of the single thermal storage tank is given, and the change of flow field around the coil heat exchanger is analyzed.… More >

Displaying 1-10 on page 1 of 11. Per Page