Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    The Effect of Uncaria gambir on Optical Properties and Thermal Stability of CNF/PVA Biocomposite Films

    Remon Lapisa1,2, Anna Niska Fauza1,*, Dieter Rahmadiawan1,3, Krismadinata2, Dori Yuvenda1,2, Randi Purnama Putra1,2, Waskito1, Nandy Putra4, Hairul Abral5

    Journal of Renewable Materials, Vol.12, No.9, pp. 1593-1603, 2024, DOI:10.32604/jrm.2024.053651 - 25 September 2024

    Abstract Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties. Among all types of cellulose materials available, cellulose nanofiber (CNF) has great potential to be utilized in a diverse range of applications, including as a film material. In this study, CNF biocomposite film was prepared by using polyvinyl alcohol (PVA) as a matrix and Uncaria gambir extract as a filler. This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film. The formation of the CNF biocomposite films was confirmed… More >

  • Open Access

    ARTICLE

    Effects of Conductive Carbon Black on Thermal and Electrical Properties of Barium Titanate/Polyvinylidene Fluoride Composites for Road Application

    Zhenguo Wang, Lenan Wang, Yejing Meng*, Yong Wen, Jianzhong Pei

    Journal of Renewable Materials, Vol.11, No.5, pp. 2469-2489, 2023, DOI:10.32604/jrm.2023.025497 - 13 February 2023

    Abstract In the field of roads, due to the effect of vehicle loads, piezoelectric materials under the road surface can convert mechanical vibration into electrical energy, which can be further used in road facilities such as traffic signals and street lamps. The barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) composite, the most common hybrid ceramic-polymer system, was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material. Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites. However, few… More >

  • Open Access

    ARTICLE

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

    Yodthong Baimark*, Theeraphol Phromsopha

    Journal of Renewable Materials, Vol.11, No.4, pp. 1881-1894, 2023, DOI:10.32604/jrm.2023.025400 - 01 December 2022

    Abstract A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA) block copolymer has great potential for use as a flexible bioplastic. Highly flexible bioplastics are required for flexible packaging applications. In this work, a PEG was incorporated into block copolymer as a plasticizer by solvent casting. PLLA-PEG-PLLA/ PEG blends with different blend ratios were prepared, and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends. The results indicated that the PEG was an effective plasticizer for the block copolymer. The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA More > Graphic Abstract

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

  • Open Access

    ARTICLE

    Synthesis and Properties of Rosin-Based Composite Acrylamide Hydrogels

    Shuangsheng Zhang, Bin Sun, Siyu Li, Xiangyu Lin, Muhua Chen*, Xu Xu*

    Journal of Renewable Materials, Vol.11, No.2, pp. 853-865, 2023, DOI:10.32604/jrm.2022.022901 - 22 September 2022

    Abstract Hydrogels have been widely applied in agricultural drought-resistance, pollution regulation, drug delivery and so on. Acrylamide (AM) is usually used as raw material to synthesize acrylamide hydrogels. However, inherently low mechanical strength greatly limits their applications in some special areas. Therefore, it is necessary to choose suitable functional monomers to optimize acrylamide hydrogels and improve their mechanical performances. In this paper, a novel acrylamide monomer modified by rosin was synthesized, and then polyacrylamide/rosin-based acrylamide (RAM) composite hydrogels were prepared via free radical polymerization using potassium persulfate as initiator, N, N′-methylene-bisacrylamide (MBA) as a crosslinker. The… More > Graphic Abstract

    Synthesis and Properties of Rosin-Based Composite Acrylamide Hydrogels

  • Open Access

    ARTICLE

    Influence of Beta-Cyclodextrin Functionalized Tin Phenylphosphonate on the Thermal Stability and Flame Retardancy of Epoxy Composites

    Yongming Chen1,2,#, Shuai Huang1,#, Han Zhao1, Ru Yang2, Yining He1, Tianyu Zhao1, Yunlong Zhang1, Qinghong Kong1,*, Shasha Sun3,*, Junhao Zhang3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3119-3130, 2022, DOI:10.32604/jrm.2022.019576 - 14 July 2022

    Abstract To enhance the thermal stability and flame retardancy of epoxy resin (EP), beta-cyclodextrin (β-CD) is successfully introduced into the layered tin phenylphosphonate (SnPP), which is incorporated into EP matrix for preparing EP/β-CD@SnPP composites. The results indicate that the addition of β-CD@SnPP obviously improve the thermal stability and residual yield of EP composites at higher temperature. When the amount of β-CD@SnPP is only 4 wt%, EP/4β-CD@SnPP composites pass V-1 rating, and LOI value is up to 30.8%. Meanwhile, β- CD@SnPP effectively suppress the heat release and reduce the smoke production of EP/β-CD@SnPP composites in combustion, and More >

  • Open Access

    REVIEW

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

    Hongliang Ding, Xin Wang*, Lei Song, Yuan Hu

    Journal of Renewable Materials, Vol.10, No.4, pp. 871-895, 2022, DOI:10.32604/jrm.2022.018150 - 02 November 2021

    Abstract Benzoxazines have attracted wide attention from academics all over the world because of their unique properties. However, most of the production and preparation of benzoxazine resins depends on petroleum resources now, especially bisphenol A-based benzoxazine. Therefore, owing to the environmental impacts, the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines. Similar to petroleum-based benzoxazines, most of bio-based benzoxazines suffer from flammability. Thus, it is necessary to endow bio-based benzoxazines with outstanding flame retardancy. The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines. More > Graphic Abstract

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

  • Open Access

    ARTICLE

    Curing Study of Epoxy Resin of (2E, 6E)-Bis (4-hydroxybenzylidene)-4-methylcyclohexanone with Different Aromatic Diamines and Anhydrides Hardeners: Spectral and Thermal Analysis

    JALPA V. CHOPDA, DHARMESH B. SANKHAVARA, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 35-48, 2021, DOI:10.32381/JPM.2021.38.1-2.4

    Abstract Conventional curing study of epoxy resin of (2E, 6E)-bis (4-hydroxybenzylidene)-4-methyl cyclohexanone (EMBHBC) was conducted at 140 0 /150 0 C by using 4,4’-diaminodiphenylmethane (DDM),4,4’-diaminodiphenylsulphone (DDS),4-4’-diaminodiphenyl ether (DDE), p-phenylenediamine (PDA), 1,2,3,6-tetrahydrophthalic anhydride(THPA), maleic anhydride (MAH) and pyromellitic dianhydride (PMDA). The gel time for DDS, THPA and DDM hardeners are found considerably longer than those of DDE, PDA, MAH and PMDA systems indicated different reactivity towards curing of EMBHBC. Sol–gel analysis of cured resins was carried out in DMF at room temperature. Diamines cured samples showed 76.3-97.5% gel fractions, while anhydrides cured samples showed 84.6-99.6% gel fractions.… More >

  • Open Access

    ARTICLE

    Sawdust Short Fiber Reinforced Epoxidized Natural Rubber: Insight on Its Mechanical, Physical, and Thermal Aspects

    O. S. Dahham1, N. Z. Noriman1,2,*, H. Jaya1, R. Hamzah1, M. U. Umar2,3, I. Johari4

    Journal of Renewable Materials, Vol.8, No.12, pp. 1633-1645, 2020, DOI:10.32604/jrm.2020.011377 - 12 November 2020

    Abstract In this work, Epoxidized natural rubber/sawdust short fiber (ENR-50/ SD) composites at different fiber content (5, 10, 15 and 20 phr) and size (fine size at 60–100 μm and coarse size at 10–20 mm) were prepared using two-roll mill and electrical-hydraulic hot press machine respectively. Curing characteristics, water uptake, tensile, morphological, physical, and thermal properties of the composites were investigated. Results indicated that the scorch time and cure time became shorter whereas torque improved as SD content increase. Though the decline of tensile strength and elongation at break values, modulus, hardness and crosslinking density have More >

  • Open Access

    ARTICLE

    Analysis of the Mechanism and Effectiveness of Lignin in Improving the High-Temperature Thermal Stability of Asphalt

    Cheng Cheng1,2,*, Weiwei Sun2, Bo Hu3, Guixiang Tao2, Chao Peng2, Yanjuan Tian4, Shujuan Wu4,5

    Journal of Renewable Materials, Vol.8, No.10, pp. 1243-1255, 2020, DOI:10.32604/jrm.2020.012054 - 31 August 2020

    Abstract The use of lignin, which is a by-product of the pulp and paper industry, in the development of asphalt binders would contribute to waste reduction, providing environmental, economic, and social benefits. In this study, samples of lignin-modified asphalt binder samples with different content of lignin (3%, 6%, 9%, 12%, and 15%) and unmodified asphalt (control) were tested using Fourier transform infrared spectroscopy (FTIR), dynamic shear rheometer (DSR), and thermogravimetry. The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed. The FTIR analysis shows that no new characteristic… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Epoxy methacrylate of (2E, 6E)-Bis(4-hydroxybenzylidene)-4- methylcyclohexanone

    JALPA V. CHOPDA, DHARMESH B. SANKHAVARA, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.36, No.4, pp. 391-399, 2019, DOI:10.32381/JPM.2019.36.04.8

    Abstract The epoxymethcrylate resin (EMBHBCMA) of (2E, 6E)-bis(4-hydroxybenzylidene)-4- methylcyclohexanone(EMBHBC) was synthesized by condensing EMBHBC and methacrylic acid (1:2 mole ratio) by using 1,4-dioxane as a solvent and triethylamine as a catalyst at reflux temperature for 1-5 h to get acid value < 10. The structure of EMBHBCMA was supported by UV-Vis, FTIR, 1 HNMR and 13CNMR spectroscopic techniques. Molecular weights and molecular weight distribution of EMBHBCMA were determined by gel permeation chromatography. EMBHBCMA is thermally stable up to about 300°C and followed two step degradation reactions. Kinetic parameters such as n, Ea, A and ΔS* were determined More >

Displaying 1-10 on page 1 of 22. Per Page