Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Effect of Thermal Conductivity of Tube-Wall on Blow-Off Limit of a Micro-Jet Methane Diffusion Flame

    Bing Liu1, Yikun Chen1, Huachen Liu1, Qiao Wu1, Minghui Wang1, Jianlong Wan2,*

    Energy Engineering, Vol.119, No.2, pp. 815-826, 2022, DOI:10.32604/ee.2022.017988

    Abstract The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide, which can be used as the heat source. In order to optimize the micro-jet tube combustor in terms of the solid material, the present paper numerically investigates the impact of thermal conductivity (λs) on the operating limit of micro-jet flame. Unexpectedly, the non-monotonic blow-off limits with the increase of λs is found, and the corresponding generation mechanisms are analyzed in terms of the thermal coupling effect, flow field, and strain effect. At first, the lower preheating temperature of the fuel and larger heat… More >

  • Open Access

    ARTICLE

    Influence of Soil Heterogeneity on the Behavior of Frozen Soil Slope under Freeze-Thaw Cycles

    Kang Liu, Yanqiao Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 119-135, 2022, DOI:10.32604/cmes.2022.018134

    Abstract Soil slope stability in seasonally frozen regions is a challenging problem for geotechnical engineers. The freeze-thaw process of soil slope caused by the temperature fluctuation increases the difficulty in predicting the slope stability because the soil property is influenced by the freeze-thaw cycle. In addition, the frozen soil, which has ice crystal, ice lens and experienced freeze-thaw process, could present stronger heterogeneity. Previous research has not investigated the combined effect of soil heterogeneity and freeze-thaw cycle. This paper studies the influence of soil heterogeneity on the stability of frozen soil slope under freeze-thaw cycles. The local average subdivision (LAS) is… More >

  • Open Access

    ARTICLE

    Numerical Simulation for Bioconvection of Unsteady Stagnation Point Flow of Oldroyd-B Nanofluid with Activation Energy and Temperature-Based Thermal Conductivity Past a Stretching Disk

    Muhammad Sami Rashad1, Haihu Liu1,*, Shan Ali Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 233-254, 2022, DOI:10.32604/cmes.2022.017277

    Abstract A mathematical modeling is explored to scrutinize the unsteady stagnation point flow of Oldroyd-B nanofluid under the thermal conductivity and solutal diffusivity with bioconvection mechanism. Impacts of Joule heating and Arrhenius activation energy including convective boundary conditions are studied, and the specified surface temperature and constant temperature of wall (CTW) are discussed. The consequences of thermal conductivity and diffusivity are also taken into account. The flow is generated through stretchable disk geometry, and the behavior of non-linear thermal radiation is incorporated in energy equation. The partial differential equations governing the fluid flow in the structure is reduced into dimensionless nonlinear… More >

  • Open Access

    ARTICLE

    Model of Fractional Heat Conduction in a Thermoelastic Thin Slim Strip under Thermal Shock and Temperature-Dependent Thermal Conductivity

    F. S. Bayones1, S. M. Abo-Dahab2,*, Ahmed E. Abouelregal3, A. Al-Mullise1, S. Abdel-Khalek1,4, E. M. Khalil1,5

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2899-2913, 2021, DOI:10.32604/cmc.2021.012583

    Abstract The present paper paper, we estimate the theory of thermoelasticity a thin slim strip under the variable thermal conductivity in the fractional-order form is solved. Thermal stress theory considering the equation of heat conduction based on the time-fractional derivative of Caputo of order α is applied to obtain a solution. We assumed that the strip surface is to be free from traction and impacted by a thermal shock. The transform of Laplace (LT) and numerical inversion techniques of Laplace were considered for solving the governing basic equations. The inverse of the LT was applied in a numerical manner considering the… More >

  • Open Access

    ARTICLE

    Road Performance, Thermal Conductivity, and Temperature Distribution of Steel Slag Rubber Asphalt Surface Layer

    Zhiqiang Shu, Jianmin Wu*, Shaoqing Li, Bingbing Zhang, Jianqi Yang

    Journal of Renewable Materials, Vol.9, No.2, pp. 365-380, 2021, DOI:10.32604/jrm.2021.014379

    Abstract The use of steel slag, which is a by-product of the steel manufacture, in the construction of asphalt pavement would contribute to waste reduction and environment protection. Using rubber asphalt at the same time can improve the performance of asphalt mixture. This study investigates the influence of steel slag content on the road performance, thermal conductivity and outdoor temperature distribution of steel slag rubber asphalt mixtures (SSRAM), and calculates the cumulative stress in surface layer. At a certain range of concentration, the steel slag additive improved the deformation resistance and low-temperature cracking resistance of the mixtures. The SSRAM with 40%… More >

  • Open Access

    ARTICLE

    The Influence of Two Natural Reinforcement Fibers on the Hygrothermal Properties of Earthen Plasters in Mogao Grottoes of China

    Wenbei Bi1, Zengfeng Yan1,*, Huan Zhao1, Lixin Sun2, Xudong Wang3,4, Zhengmo Zhang3

    Journal of Renewable Materials, Vol.8, No.12, pp. 1691-1710, 2020, DOI:10.32604/jrm.2020.012808

    Abstract Murals in Mogao Grottoes consist of three parts: support layer, earthen plasters and paint layer. The earthen plasters play a key role in the preservation of murals. It is a mixture of Dengban soil, sand, and plant fiber. Two different natural fibers, hemp fiber and cotton fiber, were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance. The two types of earthen plasters were studied: one containing hemp fiber in the fine plaster (HFP) and the other containing cotton fiber in the fine plaster (CFP). Specific heat capacity, dry thermal conductivity, water vapor permeability,… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer by Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 181-198, 2020, DOI:10.32604/fdmp.2020.07804

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene

    Yue Jia1, Chun Li1, *, Jinwu Jiang2, Ning Wei3, Yang Chen4, Yongjie Jessica Zhang5

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 813-823, 2020, DOI:10.32604/cmc.2020.07801

    Abstract The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is orientation dependent. The thermal conductivity of the borophene does not vary as changing the width of the borophene nanoribbon and the perimeter of the borophene nanotube. In addition, the thermal conductivity of the borophene… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer By Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 253-270, 2019, DOI:10.32604/fdmp.2019.03896

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open Access

    ABSTRACT

    Numerical Simulation on the Influence of the Properties of Continuous Phase on Fluid Flow and Temperature Response in a Laser-Heated Suspended Droplet

    Long Jiao1,2, Zhibin Wang1,2, Rong Chen1,2,*, Xun Zhu1,2, Qiang Liao1,2, Dingding Ye1,2, Biao Zhang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 144-146, 2019, DOI:10.32604/icces.2019.04734

    Abstract With the advances in micro total analysis systems (µTAS), the droplet-based microfluidics, which manipulates mini discrete droplets in an immiscible continuous phase to accomplish various detections, has been applied to many fields including medicine, pharmacy, fine-chemistry and biotechnology as it offers distinct advantages, such as small diffusion length, high-throughput, precise control and integratability [1]. As compared to the continuous-flow microfluidics, the samples in the droplet-based microfluidics are isolated by a defined droplet/continuous phase interface, avoiding the cross contamination and resulting in a controllable reaction environment. In the droplet-based microfluidics, the control of the droplet temperature with prominent temporal spatial resolution… More >

Displaying 41-50 on page 5 of 67. Per Page