Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Enhancing Hygrothermal Performance in Multi-Zone Constructions through Phase Change Material Integration

    Abir Abboud1, Zakaria Triki1, Rachid Djeffal2, Sidi Mohammed El Amine Bekkouche2, Hichem Tahraoui1,3,4, Abdeltif Amrane4, Aymen Amin Assadi5, Lotfi Khozami5, Jie Zhang6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 769-789, 2024, DOI:10.32604/fhmt.2024.050330 - 11 July 2024

    Abstract As buildings evolve to meet the challenges of energy efficiency and indoor comfort, phase change materials (PCM) emerge as a promising solution due to their ability to store and release latent heat. This paper explores the transformative impact of incorporating PCM on the hygrothermal dynamics of multi-zone constructions. The study focuses on analyzing heat transfer, particularly through thermal conduction, in a wall containing PCM. A novel approach was proposed, wherein the studied system (sensitive balance) interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates. In addition, More >

  • Open Access

    ARTICLE

    Assessment of Different Optimization Algorithms for a Thermal Conduction Problem

    Mohammad Reza Hajmohammadi1, Javad Najafiyan1, Giulio Lorenzini2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 233-244, 2023, DOI:10.32604/fdmp.2023.019763 - 02 August 2022

    Abstract In this study, three computational approaches for the optimization of a thermal conduction problem are critically compared. These include a Direct Method (DM), a Genetic Algorithm (GA), and a Pattern Search (PS) technique. The optimization aims to minimize the maximum temperature of a hot medium (a medium with uniform heat generation) using a constant amount of high conductivity materials (playing the role of fixed factor constraining the considered problem). The principal goal of this paper is to determine the most efficient and fastest option among the considered ones. It is shown that the examined three More >

  • Open Access

    ABSTRACT

    Parallel Simulation of Thermal Conduction in Coal Gasification Vessel Considering Cooling Pipes

    Naoto Mitsume*, Tomonori Yamada, Shinobu Yoshimura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 65-65, 2019, DOI:10.32604/icces.2019.05538

    Abstract Research and development with regard to advanced coal-fired power plants to reduce CO2 emission have been conducted. Coal gasification is one of the key technologies. In reactor for the coal gasification, coal is crushed into fine particulate matter and then partially burned into gas in a high-pressure environment in the reactor. Our research group has carried out a project to tackle a coupled problem of thermo-fluid-structure interaction for quantification of its efficiency, environmental load, and structural integrity. As one of key components of the project, we present a large-scale parallel simulation of three-dimensional (3D) thermal… More >

Displaying 1-10 on page 1 of 3. Per Page