Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (743)
  • Open Access

    ARTICLE

    Modeling of Leachate Propagation in a Municipal Solid Waste Landfill Foundation

    Nadezhda Zubova*, Andrey Ivantsov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1407-1424, 2024, DOI:10.32604/fdmp.2024.051130

    Abstract The study deals with the numerical modeling of leachate distribution in the porous medium located under a municipal solid waste disposal landfill (MSWLF). The considered three-layer system is based on geological data obtained from field measurements. For simplicity, the problem is investigated by assuming a two-component approach. Nevertheless, the heat produced by landfills due to biological and chemical processes and the thermal diffusion mechanism contributing to pollution transport are taken into account. The numerical modeling of the propagation of leachate in the considered layered porous medium is implemented for parameters corresponding to natural soil and More >

  • Open Access

    ARTICLE

    Heat Transfer Enhancement of the Absorber Tube in a Parabolic Trough Solar Collector through the Insertion of Novel Cylindrical Turbulators

    Yasser Jebbar1,2,*, Fadhil Fluiful2, Wisam Khudhayer3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1279-1297, 2024, DOI:10.32604/fdmp.2024.050753

    Abstract This study includes an experimental and numerical analysis of the performances of a parabolic trough collector (PTC) with and without cylindrical turbulators. The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width. The related reflector is made of lined sheets of aluminum, and the tubes are made of stainless steel used for the absorption of heat. They have an outer diameter of 0.051 m and a wall thickness of 0.002 m. Water, used as a heat transfer fluid (HTF), flows through the absorber tube at a mass flow rate… More >

  • Open Access

    ARTICLE

    Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

    Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3

    Journal of Renewable Materials, Vol.12, No.4, pp. 843-867, 2024, DOI:10.32604/jrm.2024.049942

    Abstract The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on… More >

  • Open Access

    ARTICLE

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

    Yosr Laatiri, Habib Sammouda, Fadhel Aloulou*

    Journal of Renewable Materials, Vol.12, No.4, pp. 771-798, 2024, DOI:10.32604/jrm.2024.047022

    Abstract This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings. Our contribution is the creation of insulating composite panels made of bio-based phase change materials (bio-PCM is all from coconut oil), cement and renewable materials (treated wood fiber and organic clay). The inclusion of wood fibers improved the thermal properties; a simple 2% increase of wood fiber decreased the heat conductivity by approximately 23.42%. The issues of bio-PCM leakage in the cement mortar and a roughly 56.5% reduction in thermal… More > Graphic Abstract

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

  • Open Access

    ARTICLE

    On the Features of Thermal Convection in a Compressible Gas

    Igor B. Palymskiy1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 957-974, 2024, DOI:10.32604/fdmp.2024.048829

    Abstract The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to study the stability of the steady mode of Rayleigh-Bénard convection in compressible, viscous and heat-conducting gases encapsulated in containers with no-slip boundaries and isothermal top and bottom walls. An initial linear temperature profile is assumed. A map of the possible convective modes is presented assuming the height of the region and the value of the temperature gradient as influential parameters. For a relatively small height, isobaric convection is found to take place, which is taken over… More >

  • Open Access

    ARTICLE

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

    Zhengfan Lyu1,3, Yulin Li2,3, Mengmeng Fan1,3,*, Yan Huang1, Chenguang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 901-913, 2024, DOI:10.32604/fdmp.2023.043512

    Abstract Red mud (RM) is a low-activity industrial solid waste, and its utilization as a resource is currently a hot topic. In this study, the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy. The performance of calcined red mud was determined through mortar strength tests. Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud, and increase the surface roughness and specific surface area. At the optimal temperature of 700°C, the addition of calcined red mud still leads to a decrease More > Graphic Abstract

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

  • Open Access

    REVIEW

    Research Progress on Economic Forest Water Stress Based on Bibliometrics and Knowledge Graph

    Xin Yin1,#, Shuai Wang1,#, Chunguang Wang1, Haichao Wang2, Zheying Zong1,3,*, Zeyu Ban1

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 843-858, 2024, DOI:10.32604/phyton.2024.049114

    Abstract This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared, spectral remote sensing technology, and the estimation of economic forest water stress. It aimed to review the development and current status of this field, as well as to identify future research trends. A search was conducted on the China National Knowledge Infrastructure (CNKI) database using the keyword “water stress” for relevant studies from 2003 to 2023. The visual analysis function of CNKI was used to generate the distribution of annual publication volume, and CiteSpace 6.1.R6 was utilized to create network More >

  • Open Access

    ARTICLE

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

    Awais Khan1, Chomyong Kim2, Jung-Yeon Kim2, Ahsan Aziz1, Yunyoung Nam3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1729-1755, 2024, DOI:10.32604/cmes.2024.049618

    Abstract Sleep posture surveillance is crucial for patient comfort, yet current systems face difficulties in providing comprehensive studies due to the obstruction caused by blankets. Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns. Consequently, this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification, thereby enhancing the analysis of body position and comfort. This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras, which depict six commonly adopted postures: supine,… More > Graphic Abstract

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

  • Open Access

    ARTICLE

    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1387-1404, 2024, DOI:10.32604/cmes.2024.048672

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance More >

  • Open Access

    CORRECTION

    Correction: Fine-Tuned Extra Tree Classifier for Thermal Comfort Sensation Prediction

    Ahmad Almadhor1, Chitapong Wechtaisong2,*, Usman Tariq3, Natalia Kryvinska4,*, Abdullah Al Hejaili5, Uzma Ghulam Mohammad6, Mohana Alanazi7

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 855-856, 2024, DOI:10.32604/csse.2024.052412

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 743. Per Page